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1 Curves

This section is based on Chapters 1-3 from [2].

1.1 Parametrized curves in Rn

(i) A curve in C ⊂ Rn is defined by a set

{x = (x1, . . . , xn) ∈ Rn : fi(x) = ci, for 1 ≤ i ≤ n− 1},

where each fi : Rn → R is a continuous functions, and ci ∈ R.

(ii) Examples of curves in R2.

(a) The parabola C1 = {(x, y) ∈ R3 : x2 − y = 0}.
(b) The circle C2 = {(x, y) ∈ R3 : x2 + y2 = 1}.
(c) The astroid C3 = {(x, y) ∈ R3 : x2/3 + y2/3 = 1}.

(iii) A parametrized curve in Rn is a continuous map

γ : (α, β)→ Rn : t
γ7−→ (γ1(t), . . . , γn(t))

where −∞ ≤ α < β ≤ ∞, and the γi : R→ R are continuous maps.

(iv) Examples of parametrized curves.

(a) A parametrization for the curve C1 is

γ1 : (−∞,∞)→ R2 : t
γ17−→ (t, t2).

(b) A parametrization for the curve C2 is

γ2 : (−∞,∞)→ R2 : t
γ27−→ (cos(t), sin(t)).

(c) A parametrization for the curve C3 is

γ3 : (−∞,∞)→ R2 : t
γ37−→ (cos3(t), sin3(t)).

(v) A parametrized curve γ : (α, β) → Rn is said to be smooth is all the

derivative dkγi
dtk

, for 1 ≤ i ≤ n and k ∈ N exist and are continuous. From
here on, we will assume that all parametrizations are smooth.
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(vi) Given a parametrized curve γ : (α, β) → Rn, we define its tangent
vector by

γ′(t) =
dγ

dt
.

(vii) If the tangent vector of a parametrized curve is constant, then the curve
is a part of a straight line.

(viii) The arc length of a parametrized curve γ(t) starting at γ(t0) is defined
by the function

s(t) =

∫ t

t0

‖γ′(u)‖du.

(ix) Let γ : (α, β) → Rn be a parametrized curve. Then the speed of γ at
γ(t) is defined by ‖γ′(t)‖. The curve γ is said to be of unit speed if
‖γ′(t)‖ = 1, for all t ∈ (α, β).

(x) Let γ : (α, β)→ Rn be a parametrized curve of unit speed. Then, either
γ′′ = 0, or γ′′ ⊥ γ′.

(xi) A parematrized curve γ̃ : (α̃, β̃) → Rn is said to be a reparametriza-
tion of a parametrized curve γ : (α, β) → Rn if there exists a smooth
bijective map φ : (α̃, β̃) → (α, β) such that φ−1 is smooth, and α̃(t̃) =
γ(φ(t)), for all t̃ ∈ (α̃, β̃).

(xii) If γ̃ is a reparametrization of γ, then γ is a reparametrization of γ̃ via
the map φ−1.

(a) For example, the curve γ̃(t) = (sin(t), cos(t)) is a reparametriza-
tion of γ(t) = (cos(t), sin(t)) via φ(t) = π/2− t.

1.2 Regular curves

(i) A point γ(t) of a parametrized curve γ is said to regular if γ′(t) = 0,
and is said to be a singular point, otherwise.

(ii) A parametrized curve γ : (α, β) → Rn is said to regular, if γ(t) is a
regular point, for every t ∈ (α, β).

(iii) Examples of regular (or non-regular) curves.
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(a) The logarithmic spiral γ(t) = (et cos(t), et sin(t)) is regular, as
‖γ′(t)‖2 = 2e2t 6= 0.

(b) The twisted cubic γ(t) = (t, t2, t3), t ∈ (−∞,∞) is regular, as
‖γ′(t)‖ =

√
1 + 4t2 + 9t4 6= 0.

(c) The regularity of a curve is dependent in its parametrization. For
example, γ(t) = (t3, t6) is a not a regular parametrization of the
curve y = x2.

(iv) Any reparametrization of a regular curve is regular.

(v) If γ(t) is a regular curve, then its arc length s(t) starting at any point
of γ is a smooth function of t.

(vi) A reparametrized curve is of unit speed if, and only if, its regular.

(vii) Let γ be a regular curve, and let γ̃ be a reparametrization of γ given
by γ̃(u(t)) = γ(t), where u is a smooth function of t. Then γ̃ is of unit
speed if, and only if,

u(t) = ±s(t) + c,

where s(t) is a the arc length and c is a constant.

(viii) Example of reparametrizations.

(a) The curve γ(t) = et cos(t), et sin(t) has arc length s(t) =
√

2(et−1),
and a unit-speed reparametrization given by t = log(s/

√
2 + 1).

(b) The curve γ(t) = (t, t2, t3) has arc-length given by the elliptic
integral

s(t) =

∫ t

0

√
1 + 4u2 = 9u4du.

(ix) The level set of a smooth function f : Rn → R is a set of the form

{x ∈ Rn : f(x) = c},

where c ∈ R. A level set of a smooth function f : R2 → R is called a
level curve.

(x) Let f(x, y) be a smooth function in two variables. Assume that, at
every point of the level curve C = {(x, y) ∈ R2 : f(x, y) = 0}, the
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partial derivatives ∂f
∂x

and ∂f
∂x

are not both zero. If P (x0, y0) is a point
of C, there exists a regular parametrized curve γ(t) defined on an open
interval containing 0 such that γ(0) = (x0, y0) , and γ(t) ∈ C, for all t.

(xi) Let γ be a regular parametrized curve in R2, and let γ(t0) = (x0, y0).
Then there exists a smooth real-valued function f(x, y) defined for all
points x and y defined in open intervals containing x0 and y0, respec-
tively, (satisfying the conditions of (x) above) such that γ(t) ∈ {(x, y) ∈
R2 : f(x, y) = 0}, for all t in some open interval containing t0.

1.3 Curvature of curves

(i) Let γ be a unit speed curve with parameter s, and let γ̇ = dγ
ds

. Then
the curvature of γ at a point γ(s) is defined by

κ(s) = ‖γ̈(s)‖.

(ii) Examples of curvature.

(a) The curvature of a line is zero.

(b) The curvature of a circle γ(s) = x0+R cos(s/R))+y0+R sin(s/R))
in R2 with center (x0, y0) and radius R is given by κ = 1/R.

(iii) The curvature of a curve remains invariant under reparametrization.

(iv) Let γ be a regular curve in R3 with parameter t. Then its curvature is
given at the point γ(t) is given by

κ(t) =
‖γ′′(t)× γ′(t)‖
‖γ′(t)‖3 ,

where γ′(t) = dγ
dt

.

(v) For example, the curvature of the helix h about z-axis

h(θ) = (a cos(θ), a sin(θ), bθ), −∞ < θ <∞

is given by κ = |a|/(a2 + b2).
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1.4 Plane curves

(i) Let γ be a unit-speed plane curve with parameter s, and let T (s) denote
the unit tangent vector at γ(s).

(a) The signed unit normal n(s) to γ(s) (at γ(s)) is the unit vector
obtained by rotating T (s) = γ̇(s) counter-clockwise by π/2.

(b) Since γ̈(s) is parallel to n(s), it follows that γ̈(s) = κ±(s)n(s),
where κ±(s) is called the signed curvature of γ. By definition, we
have

κ(s) = ‖γ̈(s)‖ = ‖κ±(s)n(s)‖ = |κ±(s)|.

(ii) Let γ be a unit-speed plane curve with parameter s, and let ϕ(s) be
the angle through which a fixed unit vector must be rotated counter-
clockwise to bring it into coincidence with the unit tangent vector T .
Then

κ±(s) =
dϕ

ds
.

In particular, the signed curvature of a curve is the rate of rotation of
its tangent vector.

(iii) Let κ : (α, β)→ R be a smooth function. Then there exists a unit-speed
curve γ : (α, β)→ R2 whose signed curvature is κ given by

γ(s) =

(∫ s

s0

cos(ϕ(t))dt,

∫ s

s0

sin(ϕ(t))dt

)
, where ϕ(s) =

∫ s

s0

κ(u)du.

Furthermore, if γ̃ : (α, β) → R2 is another unit-speed curve whose
signed curvature is κ, then there exists a rigid motion M of R2 such
that

γ̃(s) = M(γ(s)), for all s ∈ (α, β).

(iv) Examples of signed curvature.

(a) The signed curvature of a circle γ(s) = x0 + R cos(s/R)) + y0 +
R sin(s/R)) in R2 is given by κ± = 1/R.

(b) By (iii), a plane curve whose signed curvature is κ±(s) = s is given
by the Fresnel’s integrals

γ(s) =

(∫ s

0

cos(t2/2)dt,

∫ s

0

sin(t2/2)dt

)
.
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(v) Any regular plane curve whose curvature is a positive constant is a part
of a circle.

1.5 Space curves

(i) Let γ be a unit-speed curve in R3 with parameter s.

(a) Assuming that k(s) 6= 0, for any s, we define the principal normal
of γ at γ(s) to be

η(s) =
1

κ(s)

dT

ds
.

(b) We define the binormal vector of γ at γ(s) to be

b(s) = T (s)× η(s).

(ii) The unit-vectors T (s), η(s), and b(s), form an orthonormal basis for R3,
for every s.

(iii) At every point γ(s) in a unit-speed space curve γ, ḃ(s) = −τ(s)η(s),
where τ(s) is a scalar called the torsion of γ. As τ remains invariant
under reparametrization, we define the torsion of an arbitrary regular
curve γ to be the torsion of the unit-speed reparametrization of γ.

(iv) Let γ(t) be a regular curve with nowhere-vanishing curvature. Then

τ =
(γ′ × γ′′) · γ′′′

‖γ̇ × γ̈‖2
,

where γ′ = dγ
dt

and γ̇ = dγ
ds

.

(v) Let γ be a regular space curve with nowhere-vanishing curvature. Then
γ(t) is contained in a plan (i.e. planar) if, and only if, τ = 0, at every
point in γ.

(vi) (Serret-Frenet) Let γ be a unit-speed space curve with nowhere-vanishing
curvature. Then

˙Tη
b

 =

 0 κ 0
−κ 0 τ
0 −τ 0

Tη
b

 .
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(vii) Let γ be a unit-speed space curve with constant curvature and zero
torsion. Then γ is a part of a circle.

(viii) Let κ, τ : R3 → R be smooth functions with κ > 0 everywhere. Then
there exists a unit-speed curve γ in R3 whose curvature is κ and torsion
is τ . Moreover, if γ̃ is another curve in R3 with curvature κ and torsion
τ , then there exists a rigid motion M (of R3) such that

γ̃(s) = M(γ(s)), for all s.

1.6 Simple closed curves

(i) Let k ∈ R be a positive constant. A simple closed plane curve with
period k is a regular curve γ : R→ R2 such that

γ(t) = γ(t′) ⇐⇒ t− t′ = nk, where n ∈ Z.

(ii) For example, the parametrized circle γ(t) = cos(2πt/k), sin(2πt/k) is a
simple closed curve of period k.

(iii) (Jordan Curve Theorem) Any simple closed plane curve γ has an inte-
rior int(γ) and an exterior ext(γ) such that:

(a) int(γ) is bounded,

(b) ext(γ) is unbounded, and

(c) both int(γ) and ext(γ) are connected.

(iv) Since every point γ(t) in a simple closed plane curve γ of period k is
traced out by an interval of length k , we may assume (without loss of
generality) that

γ : [0, k]→ R2.

(v) The length `(γ) of a simple closed plane curve γ : [0, k]→ R2 of period
k is given by

`(γ) =

∫ a

0

‖γ′(t)‖dt.

(vi) Let γ : [0, k]→ R2 be a simple closed plane curve of period k. Then a
unit-speed reparameterization γ̃ of γ has period `(γ).
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(vii) A simple closed plane curve is said to be positively oriented if its signed
unit normal n(s) points inward toward int(γ) at every point in γ(s) in
γ. As a convention, we shall assume from here on that all simple closed
curves are positively oriented.

(viii) If γ(t) = (x(t), y(t)) be a positively oriented simple closed plane curve
with period k. Then the area of the interior of γ is given by

Area(int(γ)) =
1

2

∫ k

0

(xy′ − yx′)dt.

(ix) (Wirtinger’s Inequality) Let F : [0, π] → R be a smooth function such
that F (0) = F (π) = 0. Then∫ π

0

(
dF

dt

)2

dt ≥
∫ π

0

F (t)2dt,

with equality holding if, and only if, F (t) = A sin(t), for all t ∈ [0, π],
where A is a constant.

(x) (Isoperimetric inequality) Let γ be a simple closed plane curve. Then

Area(int(γ)) ≤ 1

4π
`(γ)2,

with equality holding if, and only if, γ is a circle.

(xi) The vertex of a plane curve γ is a point where its signed curvature κ±
has a stationary point (i.e dκ±

dt
= 0).

(xii) For example, the curve γ(t) = (a cos(t), b sin(t)) has vertices at t =
0, π/2, π, and 3π/2.

(xiii) A simple closed plane curve γ is said to be convex if for any two points
P,Q ∈ int(γ), the straight line segment joining P and Q lies inside
int(γ).

(xiv) (Four-vertex theorem) Every convex simple closed plane curve has at
least four vertices.
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2 Surfaces

This section is based on Chapters 2-3 from [1] and Chapters 3-4 from [3].

2.1 Regular surfaces

(i) A subset S ⊂ R3 is called regular surface if, for each p ∈ S, there exists
a neighborhood V 3 p, and a map f : U → V ∩S of an open set U ∈ R2

onto V ∩ S such that:

(1) f is differentiable, that is,

f(u, v) = (x(u, v), y(u, v), z(u, v))

has continuous partials of all orders,

(2) f is a homeomorphism, and

(3) for each q ∈ U , the differential dfq : R3 → R3 is injective, that is,
at least one of the Jacobians

∂(x, y)

∂(u, v)
,
∂(y, z)

∂(u, v)
,
∂(z, x)

∂(u, v)

is nonzero at q ∈ U .

The map f is called a parametrization or local coordinates at p, and the
neighborhood V ∩ S 3 p is called a coordinate neighborhood at p.

(ii) Examples of regular surfaces.

(a) The unit sphere S2 = {(x, y, z) ∈ R3 : x2 +y2 +z2 = 1} is a regular
surface with the parametrizations

f±1 : {(x, y) ∈ R2 : x2 + y2 < 1} → S2 : (x, y)
f±17−→ (x, y,±

√
1− x2 − y2)

f±2 : {(y, z) ∈ R2 : y2 + z2 < 1} → S2 : (y, z)
f±27−→ (±

√
1− y2 − z2, y, z)

f±3 : {(x, z) ∈ R2 : x2 + z2 < 1} → S2 : (x, z)
f±37−→ (x,±

√
1− x2 − z2, z)

The parametrizations above can also be described in the ususal
spherical coordinates given by

f(θ, ϕ) = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)), where 0 < θ < π and 0 < ϕ < 2π.
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(b) The torus T 2 is the surface generated by rotating a circle of radius
r about a straight line belonging to the plane of the circle and at
a distance a > r away from the center of the circle. T 2 is a regular
surface with a parametrization given by

f(u, v) = ((r cos(u) + a) cos(v), (r cos(u) + a) sin(v), r sin(v)),

where 0 < u < 2π and 0 < v < 2π.

(iii) Let U ⊂ R2 be an open set, and let f : U → R be a differentiable map.
Then the graph of f is a regular surface.

(iv) Let U ⊂ Rn be an open set, and let f : U → Rm be a differentiable
map.

(a) A point p ∈ U is called a critical point if dfp : Rn → Rm is not
surjective.

(b) The image f(p) of a critical point p is called a critical value.

(c) A point in f(U) that is a not a critical value is called a regular
value.

(v) Let U ⊂ R3 be an open set, and let f : U → R be a differentiable map.
If q ∈ f(U) is a regular value, then f−1(q) is a regular surface.

(vi) Let S ⊂ R3 be a regular surface, and let p ∈ S. Then there exists a
neighborhood V 3 p in S such that V is the graph of a differentiable
function which has one of the following three forms:

z = f(x, y), y = g(x, z), and x = h(y, z).

(vii) Examples and nonexamples of regular surfaces.

(a) The torus T 2 in (ii)(b) is given by the equation

z2 = r2 − (
√
x2 + y2 − a)2.

Note that the function

f(x, y, z) = z2 + (
√
x2 + y2 − a)2

is differentiable, whenever (x, y) 6= (0, 0). Thus, r2 is a regular
value of f , and by (v), it follows that T 2 = f−1(r2) is a regular
surface.
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(b) The one-sheeted cone C given by the equation z =
√
x2 + y2 is

not a regular surface for the following reason. If C were regular,
then by (vi), C must be the graph of a diffrentiable function of
the form z = f(x, y), which has to agree with z =

√
x2 + y2 in a

neighborhood of (0, 0, 0). But this is impossible, as z =
√
x2 + y2

is not differentiable at (0, 0).

(viii) Let S be a regular surface, and let p ∈ S. If f : U → R3, where U ⊂ R3

is open, be an injective map with p ∈ f(U) ⊂ S such that conditions
(1) and (3) of (i) hold, then f−1 is continuous.

2.2 Change of coordinates

(i) Let S1, S2 be regular surfaces, and let V1 ⊂ S1 be an open set. A
continuous map ϕ : V → S2 is said to be differentiable at p ∈ V1 if,
given parametrizations

fi : Ui → Si, for i = 1, 2

with p ∈ f1(U) and ϕ(f1(U1)) ⊂ f2(U2), the map f−1
2 ◦ϕ ◦ f1 : U1 → U2

is differentiable at q = f−1
1 (p).

(ii) Two regular surfaces S1 and S2 are said to be diffeomorphic if there
exists a differentiable map ϕ : S1 → S2 with a differentiable inverse
ϕ−1 : S2 → S1. Such a map ϕ is called a diffeomorphism from S1 to S2.

(iii) Example of differentiable maps and diffeomorphisms.

(a) If f : U(⊂ R2)→ S is a parametrization, then f : U → f(U) is a
diffeomorphism.

(b) Let Si, for i = 1, 2 be regular surfaces, let S1 ⊂ V , where, where
V is an open set of R3. If ϕ : V → R3 is a differentiable map
such that ϕ(S1) ⊂ S2, then ϕ|S1 : S1 → S2 is differentiable. In
particular, the following maps are differentiable.

(1) Let S ⊂ R3 be a surface that is symmetric about the xy-plane.
Then its reflection about the xy-plane given by

ρ : S → S : (x, y, z)
ρ7−→ (x, y,−z)

is a diffeomorphism.
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(2) Let Rz,θ be a rotation in R3 about the z-axis counter-clockwise
by θ radians. If S is a regular surface such that Rz,θ(S) ⊂ S,
then Rz,θ|S is a diffeomorphism.

(3) For fixed nonzero real numbers a, b, c, the differentiable map

ϕ : R3 → R3 : (x, y, z)
ϕ7−→ (xa, yb, zc)

restricts to diffeomorphism from the sphere S2 onto the ellip-
soid {(x, y, z) ∈ R3 : (x/a)2 + (y/b)2 + (z/c)2 = 1}.

(iv) Let S be a regular surface, and let p ∈ S. Let f : U(⊂ R2) → S and
g : V (⊂ R2) → S be two parametrizations of S such that p ∈ x(U) ⊂
y(V ) = W . Then the change of coordinates defined by

h := f−1 ◦ g : g−1(W )→ g−1(W )

is a diffeomorphism.

(v) Let S be a regular surface, let V ⊂ R3 be a open set such that S ⊂ V .
If f : V → R is a differentiable function, then so is f |S.

(vi) Examples of differentiable functions on a regular surface S.

(a) For a fixed unit vector v ∈ R3, the height function relative of v
defined by

hv : S → R : w
hv7−→ w · v

is differentiable function on S.

(b) For a fixed unit vector p0 ∈ R3, the function defined by

f : S → R : p
f7−→ ‖p− p0‖2

is differentiable function on S.

(vii) Let f : U(⊂ R2)→ R3 be a differentiable map. Then:

(a) The map f is called a parametrized surface.

(b) The set f(U) is called the trace of f .

(c) The map f is said to be regular if the differential dfq : R2→ R3 is
injective for all q ∈ U .
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(d) A point p ∈ U where dfp is not injective is called a singular point
of f .

(viii) Two important examples of parametrized surfaces.

(a) (Surface of revolution) Let S ⊂ R3 be the surface obtained by
rotating a regular connected plane curve C about an axis ` in
the plane which does not intersect the curve. Then S is called
the surface of revolution generated by the curve C with rotation
axis `. In particular, let C be a curve in the xz-plane with a
parametrization

x = f(v), z = g(v), a < v < b and f(v) > 0,

that is rotated about the z-axis. Then S is a regular parametrized
surface with a parametrization given by F : U → R3 , where

F (u, v) = (f(v) cos(u), f(v) sin(u), g(v)),

and
U = {(u, v) ∈ R2 : 0 < u < 2π and a < v < b}.

(b) Let α : I → R3 be a non-planar parametrized curve. Then

fα(x, y) = α(x) + yα′(x), (x, y) ∈ I × R

is a parametrized surface called the tangent surface. Restricting
the domain of f to U = {(t, v) ∈ I × R : v 6= 0}, we see that
f : U → R3 is a regular surface whose trace has two connected
components with a common boundary α(I).

(c) Let f : U → R3 be a regular parametrized surface, and let q ∈ U .
Then there exists a neighborhood V 3 q in R2 such that f(V ) ⊂ R3

is a regular surface.

2.3 Tangent space

(i) Let S be a regular surface. A tangent vector to S at a point p ∈ S is the
tangent vector α′(0) of differentiable paramterized curve α : (ε, ε)→ S
with α(0) = p.
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(ii) Let f : U(⊂ Rn) → Rm be a differentiable map. To each p ∈ U , we
associate a linear map dfp : Rn → Rm called the differential of f at p
which is defined as follows. Let w ∈ Rn, and let α : (−ε, ε) → U be a
differentiable curve such that α(0) = p and α′(0) = w. Then β = f ◦ α
is differentiable, and we define

dfp(w) := β′(0).

(iii) Let f : U(⊂ R2)→ S be a parametrization of a regular surface S, and
let q ∈ U . Then the vector space dfq(R2) ⊂ R3 coincides with the set
of tangent vectors to S at f(q).

(iv) Let f : U(⊂ R2) → S be a parametrization of a regular surface S,
and let q ∈ U . Then the plane dfq(R2) is called the tangent plane
to S at p = f(q) denoted by Tp(S). Moreover, the parametrization
f determines a choice of basis {fu(q), fv(q)} of Tp(S) called the basis
associated with f.

(v) Let f : U(⊂ R2)→ S be a parametrization of a regular surface S, and
let q ∈ U . Let w = α′(0), where α = f ◦ β and β : (−ε, ε) → U is
β(t) = (u(t), v(t)), β(0) = q = f−1(p). Then

α′(0) = fu(q)u
′(0) + fv(q)v

′(0) = w.

(vi) Let S1, S2 be regular surfaces, and let ϕ = (ϕ1, ϕ2) : V (⊂ S1)→ S2 be
a differentiable map. Consider w ∈ Tp(S1) such that w = α′(0), where

α : (−ε, ε) → V : t
α7−→ (u(t), v(t)) with α(0) = p. Further, assume that

the curve β = ϕ ◦ α is such that β(0) = ϕ(p) ( =⇒ β′(0) ∈ Tϕ(p)(S2)).
Then the map dϕp : Tp(S1) → Tϕ(p)(S2) defined by dϕp(w) = β′(0) is
linear define by

β′(0) = dϕp(w) =

[
∂ϕ1

∂u
∂ϕ1

∂v
∂ϕ2

∂u
∂ϕ2

∂v

] [
u′(0)
v′(0)

]
.

(vii) Examples of differentials of maps.

(a) For a fixed unit vector v ∈ R3, the differential of the height func-

tion relative of v defined by hv : S → R : w
hv7−→ w · v at p ∈ S is

given by
(dhv)p(w) = w · v, ∀w ∈ Tp(S).
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(b) The differential of the rotation Rz,θ in R3 about the z-axis by θ
radians restricted to S2 has a differential at p ∈ S2 given by

(dRz,θ)p(w) = Rz,θ(w), ∀w ∈ Tp(S2).

(viii) Let S1 and S2 be regular surfaces, and let ϕ : U(⊂ S1) → S2 be a dif-
ferentiable map of an open set U ⊂ S1 such that dϕp is an isomorphism
at p ∈ U . Then ϕ is a local diffeomorphism at p.

2.4 Orientation

(i) Let V be a vector space of dimension 2 over R.

(a) An orientation for V is a choice of unit-length normal vector N
to V .

(b) With respect a fixed orientation N for V , an ordered basis {v1, v2}
basis for V is said to be positively oriented if

v1 × v2

‖v1 × v2‖
= N.

(c) With respect a fixed orientation N for V , an ordered basis {v1, v2}
basis for V is said to be negatively oriented if

v1 × v2

‖v1 × v2‖
= −N.

(ii) Let V,W be a vector spaces of dimension 2 over R. Then an isomor-
phism T : V → W is said to be orientation-preserving if for any posi-
tively oriented ordered basis {v1, v2} for V , {T (v1), T (v2)} is a positively
oriented ordered basis for W .

(iii) Let V,W be a vector spaces of dimension 2 over R. Then an isomor-
phism T : V → W is orientation-preserving if, and only if, the matrix
of T with respect to any (choice of) positively oriented ordered bases
for V and W has positive determinant.

(iv) Let S be a regular surface. A unit normal vector Np to S at p ∈ S
is a unit-length normal vector to Tp(s), that is, 〈Np, v〉 = 0, for all
v ∈ Tp(S).
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(v) Let S be a regular surface.

(a) A vector field on S is a smooth map F : S → R3.

(b) A vector F : S → R3 on S is said to be a unit normal field if
T (p) = Np, for all p ∈ S, where Np is the unit vector to S at p.

(vi) Let S be a regular surface.

(a) An orientation for S is a unit normal field on S.

(b) If S has a orientation, then S is said to be orientable.

(c) If S has no orientation, then S is said to be nonorientable.

(d) Let S be orientable. Then S together with a choice of orientation
on it is called an oriented surface.

(vii) Examples of orientable (and nonorientable) surfaces.

(a) For a fixed nonzero unit vector v ∈ R3, the plane Pv ⊂ R3 with
unit normal v is given by

Pv = {w ∈ R3 : w · v = const}.

Then Pv is a regular orientable surface with an orientation F on
Pv defined by F (w) = v, for all w ∈ Pv.

(b) Let S be a regular surface that is realized as the level surface
of a smooth map f : R3 → R, that is, S = f−1(λ), for some
regular value λ of f . The S is an orientable surface with a natural
orientation F : S → R3 given by

F (p) =
∇f(p)

‖∇f(p)‖
, ∀ p ∈ S.

(c) It follows from (b) that the sphere S2 is a orientable surface with
an orientation given by F (p) = p, for all p ∈ S2.

(d) Let Gf = {(x, y, f(x, y)) : (x, y) ∈ U} be the graph of a smooth
function f : U(⊂ R2) → R3, where U is open. Then Gf is a
orientable surface with an orientation F : Gf → R3 given by

F (p) =
(−fx(p),−fy(p), 1)√
f 2
x(p) + f 2

y (p) + 1
.
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(e) The Möbius band M given by the parametrization f : (0, 2π) ×
(−1/2, 1/2)→ R3 defined by

f(u, v) = (cos(u)(2+v sin(u/2)), sin(u)(2+v sin(u/2)), v cos(u/2))

is a nonorientable regular surface. To see this, we consider the
coordinate neighborhoods fi : Ui → Vi ⊂M , for i = 1, 2, where

U1 = {(u, v) ∈ R2 : (u, v) ∈ (π/3, 5π/3)× (−1/2, 1/2)}
and

U2 = {(u, v) ∈ R2 : (u, v) ∈ (4π/3, 8π/3)× (−1/2, 1/2)}.

Let Ni be the unit normal fields induced on Vi. It can be shown
that there exists no global normal fields N on M such that N |Vi =
Ni.

(viii) A connected orientable regular surface has exactly two orientations;
Each is the negative of the other.

(ix) The connected sum Σ1#Σ2 of 2 regular surfaces Σi is formed by deleting
open disks Bi ⊂ Σi and the identifying the resulting manifolds Σi −Bi

to each other along the resultant boundaries by a homeomorphism h :
∂Σ2 → ∂Σ1 so that

Σ1#Σ2 = (Σ1 −B1) th (Σ2 −B2).

(x) For g ≥ 1, the connected sum of g copies of the torus T 2 is called
the closed orientable surface Sg of genus g. For k ≥ 1, the connected
sum of k copies of the real projective plane RP 2 is called the closed
nonorientable surface Nk with k crosscaps.

(xi) (Classification theorem for connected closed regular surfaces) Let S be
a be a closed (i.e. ∂S = ∅) connected regular surface.

(a) If S is orientable, then S is diffeomorphic to the 2-sphere S2 or Sg,
for some g ≥ 1.

(b) If S is nonorientable, then S is diffeomorphic to Nk, for some
k ≥ 1.

(xii) Let S, S ′ be connected oriented regular surfaces, and f : S → S ′ be a
diffeomorphism. Then:
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(a) f is said to be orientation-preserving if for each p ∈ S, dfp :
Tp(S)→ Tf(p)(S

′) is orientation-preserving.

(b) f is said to be orientation-reversing, if f is not orientation-preserving.

(xiii) Examples of orientation-preserving (and reversing) diffeomorphisms.

(a) Let S ⊂ R3 be a connected regular oriented surface that is left
invariant by a rotation A ∈ O(3) about the origin. Then the
diffeomorphism A|S : S → S is orientation-preserving if, and only
if Det(A) = 1.

(b) Let S ⊂ R3 be a connected regular oriented surface that is left
invariant by a reflection RP about a plane in P ⊂ R3. Then
RP |S : S → S is a orientation-reversing diffeomorphism.

(xiv) Let S, S ′ be connected oriented regular surfaces, and f : S → S ′ be a
diffeomorphism. Then f is orientation-preserving if, and only if, there
exists a point p ∈ S such that dfp : Tp(S) → Tf(p)(S) is orientation-
preserving.

2.5 Surface area

(i) Let f : U(⊂ R2)→ S be a surface patch with q ∈ U , and let p = f(q).
Choosing the standard basis {e1, e2} of R2, the area distortion of the
linear transformation dfq : R2 → Tp(S) is given by

‖fu(q)× fv(q)‖.

(ii) Let S be a regular surface, and let R ⊂ S.

(i) We call R a polygonal region if R is covered by a single coordinate
chart f : U → S such that f−1(R) equal the union of the interior
of a piecewise-regular simple closed curve with its boundary.

(ii) We define the area (or surface area) of a polygonal region R by

Area(R) =

∫∫
f−1(R)

‖fu × fv‖ dA.

(iii) If R is union of finitely many polygonal regions intersecting only
along boundaries, then we define the area of R as the sum of the
areas over all of these polygonal regions.
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(iv) We define the integral over a polygonal region R of a smooth func-
tion g : R→ R by∫∫

R

g dA =

∫∫
f−1(R)

(g ◦ f) · ‖fu × fv‖ dA.

(v) If ψ : U1 → U2 is a diffeomorphism between open sets in R2. Let
ϕ : U2 → R is smooth, and K ⊂ U2 is a polygonal region. Then∫∫

K

ϕdA =

∫∫
ψ−1(K)

(ϕ ◦ ψ) · ‖ψu × ψv‖ dA.

(iii) Examples of surface areas.

(a) The graph Gf of a smooth function f : U(⊂ R2) → R of covered

by a single surface patch g : U → G : (x, y)
g7−→ (x, y, f(x, y)).

Therefore, the area of a polygonal region R ⊂ G is given by

Area(R) =

∫∫
g−1(R)

√
f 2
x + f 2

y + 1 dA.

(b) The graph Gf of a smooth function f : U(⊂ R2) → R of covered

by a single surface patch g : U → G : (x, y)
g7−→ (x, y, f(x, y)).

Therefore, the area of a polygonal region R ⊂ G is given by

Area(R) =

∫∫
g−1(R)

√
f 2
x + f 2

y + 1 dA.

(c) The unit sphere S2 is covered by the coordinate chart

f : (0, 2π)×(0, π)→ S2 : (θ, φ)
f7−→ (sin(φ) cos(θ), sin(φ) sin(θ), cos(φ)).

Consequently,
Area(S2) = 4π.

(d) If f : S1 → S2 is a diffeomorphism between regular surfaces and
R ⊂ S1 is a polygonal region, then f(R) is a polygonal region, and

Area(f(R)) =

∫∫
R

|fu × fv| dA.
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2.6 Isometries and the first fundamental form

(i) The first fundamental form of a regular surface S assigns to each p ∈ S
the quadratic form

Ip : Tp(S)→ R : x
Ip7−→ ‖x‖2

p,

where ‖x‖ is the usual square norm in R2.

(ii) Let f : U(⊂ R2)→ S be a surface patch. A tangent vector w ∈ Tp(S) is
the tangent vector to a parametrized curve α(t) = f(u(t), v(t)), where
t ∈ (−ε, ε) with p = α(0) = f(u0, v0). Consequently, we have

Ip(α
′(0)) = E(u′)2 + Fu′v′ +G(v′)2,

where

E(u0, v0) = 〈fu, fu〉p, F (u0, v0) = 〈fu, fv〉p, and G(u0, v0) = 〈fv, fv〉p.

(iii) Let S1, S2 be regular surfaces . A diffeomorphism f : S1 → S2 is called
an isometry if df preserves their first fundamental forms, that is,

‖dfp(x)‖2
f(p) = ‖x‖2

p, ∀p ∈ S1 and x ∈ Tp(S1)

This is equivalent to saying that df preserves the inner products of S1

and S2, that is,

〈dfp(x), dfp(y)〉f(p) = 〈x, y〉p, ∀p ∈ S1 and x, y ∈ Tp(S1).

(iv) Examples of isometries.

(a) If f is a rigid motion of R3 and S is a regular surface, f(S) is a
regular surface and f |S : S → f(S) is an isometry.

(b) The cylindrical patch

f : (−π, π)× R→ C : (u, v)
f7−→ (cos(u), sin(u), v)

is an isometry.
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2.7 Conformal and equiareal maps

(i) Let S1, S2 be regular surfaces. A diffeomorphism f : S1 → S2 is called
equiareal if

‖fu(p)× fv(p)‖ = 1, ∀p ∈ S1.

(ii) A diffeomorphism f : S1 → S2 is equiareal if, and only if preserves the
areas of polygonal regions.

(iii) Let S1, S2 be a regular surfaces. A diffeomorphism f : S! → S2 is called
conformal if df is angle-preserving, that is,

∠(x, y) = ∠(dfp(x), dfp(y)), ∀p ∈ S1 and x, y ∈ Tp(S1).

(iv) A diffeomorphism f : S1 → S2 is conformal if, and only if, there exists
a smooth positive-valued function λ : S1 → R such that

〈dfp(x), dfp(y)〉f(p) = λ(p)2 · 〈x, y〉, ∀p ∈ S1 and x, y ∈ Tp(S1).

(v) Examples of equiareal and conformal maps.

(a) Given λ > 0, the linear map A : R2 → R2 given by the matrix

A =

(
λ 0
0 1/λ

)
is equiareal, but not conformal.

(b) Given λ > 0, the linear map A : R2 → R2 given by the matrix

A =

(
λ 0
0 λ

)
is conformal, but not equiareal.

(c) The stereographic projection πN : S2 \ {N} → R2 is conformal,
but not equiareal.

(vi) A diffeomorphism f : S1 → S2 is an isometry if, and only if, it is
equiareal and conformal.

3 The curvature of a surface

3.1 Gaussian curvature

(i) Let S be an oriented surface with an orientation N : S → R3.
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(i) The Gauss map is the function N regarded as function S → S2.

(ii) For each p ∈ S, the Weingarten map is the linear map

Wp = −dNp : Tp(S)→ TP (S).

(iii) For each p ∈ S,

K(p) = Det(Wp) and H(p) =
1

2
Trace(Wp)

are respectively called the Gaussian curvature and the mean cur-
vature of S at p.

(ii) Let S be an oriented surface, and p ∈ S. Then the Weingarten map Wp

is represented by a symmetric matrix with respect to any orthonormal
basis of Tp(S).

(iii) Examples of Gaussian and mean curvatures.

(i) Let S be a two-dimensional subspace of R3. Since S can be ori-
ented by a constant unit normal field N , Wp(v) = 0, for each
p ∈ S and each v ∈ Tp(S). Thus, the

K(p) = H(p) = 0, ∀p ∈ S.

(ii) The sphere S2(r) of radius r has an orientation given by N(p) =
p/r, for all p ∈ S2(r). Consequently,

Wp = −1

r

(
1 0
0 1

)
, K(p) =

1

r2
, and H(p) = −1

r
.

(iii) Let u ⊂ R2 be open and f : U → R be a smooth function. Then
Gf is an orientable surface with an orientation F : Gf → R3 given
by

F (p) =
(−fx(p),−fy(p), 1)√
f 2
x(p) + f 2

y (p) + 1
, ∀p ∈ Gf .

Let q = (x0, y0) be critical point of f , and let p = f(q). Then

Wp =

(
fxx(q) fxy(q)
fyx(q) fyy(q)

)
,
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and
K(p) = fxx(q)fyy(q)− fxy(q)2.

Thus, if K(p) > 0, the p is a local extremum, and if K(p) < 0,
then p is a saddle point.

3.2 The second fundamental form

(i) A quadratic form QT associated with a self-adjoint linear map T : V →
V is given by QT : V → R : v

QT7−−→ 〈v, T (v)〉.

(ii) Let S be a oriented regular surface, and let p ∈ S. Let {v1, v2} be an

orthonormal basis of Tp(S) with respect to which Wp =

(
k1 0
0 k2

)
.

(a) The eigenvectors ±v1 and ±v2 are called the principal directions
of S at p.

(b) The eigenvalues k1 and k2 are called the principal curvatures of S
at p. If k1 = k2, then p is called an umbilical point.

(c) The quadratic form associated to Wp is called the second funda-
mental form IIp of S at p, that is:

IIp(v) = 〈Wp(v), v〉 = 〈−dNp(v), v〉.

(d) If v ∈ Tp(S) with ‖v‖ = 1, then IIp(v) is called the normal curva-
ture of S at p in the direction of v.

(iii) Let {v1, v2} be an orthonormal basis of eigenvectors of a self-adjoint
linear map T corresponding to eigenvalues λ1 ≤ λ2. Then

QT (cos(θ)v1 + sin(θ)v2) = λ1 cos2(θ) + λ2 sin2(θ).

In particular, λ1 and λ2 are the maximum and minimum values (resp.)
of QT on S1.

(iv) By (iii), the action of IIp on an arbitrary unit tangent vector is given
by

IIp(cos(θ)v1 + sin(θ)v2) = k1 cos2(θ) + k2 sin2(θ).
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In particular, k1 and k2 are the minimum and maximum normal curva-
tures. Moreover,

K(p) = k1k2 and H(p) =
1

2
(k1 + k2).

(v) Curvature of the cylinder: Consider the cylinder of radius r about the
z-axis given by

C(r) = {(r cos(θ), r sin(θ), z) ∈ R3 : θ ∈ [0, 2π), z ∈ R}.

At p0 = (r cos(θ0), r sin(θ0), z0) ∈ C(r), we have

Wp0 =

(
−1/r 0

0 0

)
.

So, its principal directions are

v1 = (− sin(θ0), cos(θ0), 0) and v2 = (0, 0, 1),

and its principal curvatures are

k1 = −1

r
and k2 = 0.

Hence, C(r) has constant Guassian and mean curvatures given by

K = 0 and H = − 1

2r
.

(vi) Let S be an oriented regular surface, p ∈ S, and v ∈ Tp(S) with ‖v‖ = 1.
Consider the family of all regular curves γ in S. Consider the family
Fp,γ of all regular curves γ in S with γ(0) = 0 and γ′(0) = v. Then:

(a) For every curve γ ∈ Fp,γ, we have

〈γ′′(0), N(p)〉 = IIp(v).

(b) The minimum curvature at p among curves in the family (regarded
as space curves) equals |IIp(v)|.
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(vii) Let κn = IIp(v), and let γ be a unit-speed curve with a = γ′′(0). Then
by (vi)(a), we have

a = κn ·N(p) + κg ·Rπ/2(v),

where Rπ/2 denotes a rotation of Tp(S) by π/2, and κn and κg are
scalars. The scalars κn (resp. κg) are called the normal (resp. geodesic)
curvatures of γ at p. Moreover, as κ = ‖γ′′(0)‖, we have

κ2 = κ2
n + κ2

g.

3.3 The geometry of the Gauss map

(i) Let S be an oriented regular surface with an orientation N , and let
f : U(⊂ R2)→ S be a local parametrization at p ∈ S that is compatible
with N . Let α(t) = f(u(t), v(t)) be a parametrized curve on S with
α(0) = p. Then:

(a) The second fundamental form in the basis {fu, fv} is given by

IIp(α
′) = e(u′)2 + 2fu′v′ + g(v′)2,

where

e = −〈Nu, fu〉 = 〈N, fuu〉
f = −〈Nv, fu〉 = 〈N, fuv〉 = 〈N, fvu〉 = −〈Nu, fv〉
g = −〈Nv, fv〉 = 〈N, fvv〉

(b) The coefficients of the Weingarten map Wp = (aij)2×2 are given
by the equations(
a11 a21

a12 a22

)
= −

(
e f
f g

)(
E F
F G

)−1

= − 1

EG− f 2

(
e f
f g

)(
G −F
−F E

)
.

(c) The Gaussian curvature K is given by

K = Det(Wp) =
eg − f 2

EG− F 2
,

and the mean curvature is given by

H =
1

2

eG− 2fF + gE

EG− F 2
.
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(d) The principal curvatures k1, k2 are the roots of the quadratic equa-
tion

k2 − 2Hk +K = 0,

which are given by

k = H ±
√
H2 − k.

(ii) Some explicit computations of Gaussian curvature.

(a) The Gaussian curvature of the torus under the parametrization

f(u, v) = ((a+ r cos(u)) cos(v), ((a+ r cos(u)) sin(v), r sin(u)),

0 < u < 2π, 0 < v < 2π,

can be computed to be

K =
cos(u)

r(a+ r cos(u))
.

From this, it follows that

K


= 0, if u = π/2 or 3π/2,

< 0, if u ∈ (π/2, 3π/2), and

> 0, if u ∈ (0, π/2) t (3π/2, 2π).

(b) Consider the surface of revolution as in 2.2 (viii)(a), where f and
g are replaced by ϕ and ψ, respectively, so that

f(u, v) = (ϕ(v) cos(u), ϕ(v) sin(u), ψ(v)),

0 < u < 2π, a < v < b, ϕ(v) 6= 0.

Assuming that the rotating curve is parametrized by arc length,
we have

G = (ϕ′)2 + (ψ′)2 = 1

so that

K = −ψ
′(ψ′ϕ′′ − ψ′′ϕ′)

ϕ
.
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(c) Let Gf = {(x, y, f(x, y)) : (x, y) ∈ U} be the graph of a smooth
function f : U(⊂ R2)→ R3, where U is open. Then

K =
fxxfyy − f 2

xy

(1 + f 2
x + f 2

y )2

2H =
(1 + f 2

x)fyy − 2fxfyfxy + (1 + f 2
y )fxx

(1 + f 2
x + f 2

y )3/1

(iii) Let S be an oriented surface, and let p ∈ S with K(p) 6= 0. Then
there exists a neighborhood of p in S restricted to which the Gauss
map N : S → S2 is a diffeomorphism onto its image. Furthermore,
K(p) is positive (resp. negative) if, and only if, this diffeomorphism
is orientation-preserving (resp. reversing) with respect to the given
orientation N of S.

(iv) Let S be a regular surface, and let p ∈ S.

(a) If K(p) > 0, then a sufficiently small neighborhood of p in S lies
entirely on one side of the plane p+ Tp(S).

(b) If K(p) < 0, then every neighborhood of p in S intersects both
sides of the plane p+ Tp(S).

3.4 Minimal surfaces

(i) A regular parametrized surface is called minimal if its mean curvature
vanishes everywhere.

(ii) Let f : U(⊂ R2) → R3 be a regular parametrized surface. Let D ⊂ U
be a bounded domain, and let h : D̄ → R be a differential function.
The normal variation of f(D̄) determined by h, is the map

ϕ : D̄ × (ε, ε)→ R3

defined by

ϕ(u, v, t) = f(u, v) + th(u, v)N(u, v), (u, v) ∈ D̄ and t ∈ (−ε, ε).

(iii) Given a bounded variation ϕ as above, for each t ∈ (−ε, ε), the map
f t : D → R3 given by

f t(u, v) = ϕ(u, v, t)
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is a parametrized regular surface for ε sufficiently small. Let Et, F t, Gt

be the coefficients of the first fundamental form of this surface. The
area of f t(D̄) is given by

A(t) =

∫
D̄

√
EtGt − (F t)2 du dv =

∫
D̄

√
1− 4thH + R̄

√
EG− F 2 du dv,

where R̄ = R/(EG− F 2). Consequently,

A′(0) = −
∫
D̄

2hH
√
EG− F 2 du dv.

(iv) Let f : U → R3 be a regular parametrized surface, and let D ⊂ U be
a bounded domain. Then f is minimal if, and only if, A′(0) = 0 for all
D and all bounded variations of f(D̄).

(v) A regular parametrized surface f(u, v) is said to be isothermal if

〈fu, fv〉 = 〈fv, fu〉 and 〈fu, fv〉 = 0.

(vi) The mean curvature vector H of a regular parametrized surface is de-
fined by H = HN .

(vii) Let f = f(u, v) be a regular parametrized surface, and f be isothermal.
Then

fuu + fvv = 2λ2H,
where λ2 = 〈fu, fu〉 = 〈fv, fv〉.

(viii) Let f(u, v) = x(u, v), y(u, v), z(u, v)) be a parametrized surface with
isothermal coordinates. Then f is minimal if, and only if, its coordi-
nated functions x(u, v), y(u, v), and z(u, v) are harmonic.

(ix) Examples of minimal surfaces.

(a) The catenoid given by

f(u, v) = (a cosh(v) cos(u), a cosh(v) sin(u), av), u ∈ (0, 2π), v ∈ R,
is the surface obtained by rotating the catenary y = a cosh(z/a)
about the z-axis is a minimal surface. In fact, it is the only minimal
surface of revolution.

(b) The helicoid given by

f(u, v) = (a sinh(v) cos(u), a sinh(v) sin(u), au), u ∈ (0, 2π), v ∈ R,
is a minimal surface.

30



4 The Gauss-Bonnet Theorem

4.1 Geodesics

(i) A regular curve γ : I → S in a surface S is called a geodesic if for every
t ∈ I, the the acceleration vector γ′′(t) is a normal vector to S at γ(t)
(i.e normal to Tγ(t)(S)).

(ii) (Existence and uniqueness of geodesics) Let S be a regular surface,
p ∈ S, and v ∈ Tp(S) with r = |v| 6= 0. Then there exists ε = ε(p, r) > 0
such that:

(a) There exists a geodesic γv : (−ε, ε) → S satisfying conditions
γv(0) = p and γ′v(0) = v.

(b) Any two geodesics with this domain satisying these initial condi-
tions must be equal.

Furthermore, γv(t) depends smoothly on p, v, t.

(iii) Examples of geodesics.

(a) A regular curve γ in R2 if, and only if, it is (or part of) a straight
line parametrized by constant speed.

(b) There exists no geodesic between any two points on either side of
the origin in R2 \ {(0, 0)}.

(c) Any geodesic on the unit sphere S2 centered at the origin is a
great circle (or a part of a great circle). That is, given p ∈ S2 and
v ∈ Tp(S2),

γ(t) = (cos(t))p+ (sin(t))v

is a geodesic.

(d) The helix γ(t) = (cos(t), sin(t), ct) is a geodesic in the cylinder
C = {(x, y, z) ∈ R3 : x2 + y2 = 1}.

(iv) (Clairaut’s theorem) Let S be a surface of revolution. Let β : I → S be
a unit-speed curve in S . For every s ∈ I, let ρ(s) denote the distance
from β(s) to the axis of rotation and let ψ(s) ∈ [0, π] denote the angle
between β′(s) and the longitudinal curve through β(s).

(a) If β is a geodesic, then ρ(s) sin(ψ(s)) is constant on I.
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(b) If ρ(s) sin(ψ(s)) is a constant on I, then β is a geodesic, provided
no segment of β equals a subsegment of a latitudinal curve.

4.2 The Local Gauss-Bonnet theorem

(i) Let S be an oriented surface.

(a) A subset R ⊂ S is called a region of S if it equals the union of a
open set in S together with its boundary.

(b) A region R ⊂ S is called regular if its boundary (∂R) equals the
union of the finitely many piecewise-regular simple closed curves.

(c) A parametrization γ : [a, b]→ R of a boundary component regular
region in S is said to be positively-oriented if R is to one’s left as
one traverses γ.

(ii) (The Local Gauss-Bonnet Theorem) Let S be an oriented regular sur-
face and R ⊂ S a polygonal region. Let γ : [a, b] → R be a unit-speed
positively-oriented parametrization of ∂R, with signed angles denoted
by {αi}. Then ∫ b

a

κg(t) dt+
∑
i

αi︸ ︷︷ ︸
angle displacement around γ

= 2π −
∫∫

R

K dA.

4.3 The Global Gauss-Bonnet Theorem

(i) Let S be a regular surface.

(a) A triangle in S is a polygonal region with three vertices. The three
smooth segments of the boundary of a triangular region are called
edges.

(b) A triangulation of a regular region R ⊂ S means a finite family
{T1 . . . , TF} of te triangles such that:

(1) ∪iTi = R, and

(2) if i 6= j, then Ti ∩ Tj = ∅, or Ti ∩ Tj is a common edge, or
Ti ∩ Tj is a common vertex.
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(c) The Euler characteristic of a triangulation {T1 . . . , TF} of R is

χ = V − E + F.

(ii) Let S be a regular surface, and R ⊂ S be a regular region. Two distinct
triangulations of R has the same Euler characteristic.

(iii) Every regular surface admits a triangulation.

(iv) The Euler characteristic χ(S) of a regular surface S is defined to be
the Euler characteristic of any triangulation of S.

(v) The Euler characteristic of (the triangulation of) a regular surface is a
topological invariant. That is, homeomorphic regular surfaces have the
same Euler characteristic.

(vi) Examples of χ for surfaces.

(a) χ(S2) = 2.

(b) χ(D2) = 1, where D2 is a closed disk. Consequently, χ(R) = 1,
when R is a simple polygonal region.

(c) χ(A) = 0, where A is the annulus (or the cylinder).

(d) χ(Sg) = 2 − 2g, where Sg denoted the closed oriented surface of
genus g ≥ 1. In particular, χ(Sg) < 0, when g ≥ 2.

(vii) (The Global Gauss-Bonnet Theorem) Let S be an oriented regular sur-
face and R ⊂ S a regular region with unit-speed positively-oriented
boundary components. Then∫ b

a

κg(t) dt+
∑
i

αi = 2πχ(R)−
∫∫

R

K dA,

where
∫ b
a
κg(t) denotes the sum of the integrals over all boundary com-

ponents of R, and
∑
αi denotes the sum of the signed interior angles

over all vertices of all boundary components of R.
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4.4 Some applications of the Gauss-Bonnet theorem

(i) If S is a closed oriented surface, then∫∫
S

K dA = 2πχ(S).

In particular, if S has constant curvature K, then

K Area(S) = 2πχ(S).

(ii) If S is a regular surface with K ≥ 0, then two geodesics from a point
p ∈ S cannot again at a point q ∈ S so that they cobound a region that
is diffeomorphic to a disk.

(iii) If S is a regular surface that is diffeomorphic to a cylinder with K < 0,
then S has at most one closed geodesic (up to reparametrization).
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