MTH 203: Differential Geometry of Curves and Surfaces Semester 2, 2018-19

April 4, 2019

Contents

1 Curves 3
1.1 Parametrized curves in \mathbb{R}^{n} 3
1.2 Regular curves 4
1.3 Curvature of curves 6
1.4 Plane curves 7
1.5 Space curves 8
1.6 Simple closed curves 9
2 Surfaces 11
2.1 Regular surfaces 11
2.2 Change of coordinates 13
2.3 Tangent space 15
2.4 Orientation 17
2.5 Surface area 20
2.6 Isometries and the first fundamental form 22
2.7 Conformal and equiareal maps 23
3 The curvature of a surface 23
3.1 Gaussian curvature 23
3.2 The second fundamental form 25
3.3 The geometry of the Gauss map 27
3.4 Minimal surfaces 29
4 The Gauss-Bonnet Theorem 31
4.1 Geodesics 31
4.2 The Local Gauss-Bonnet theorem 32
4.3 The Global Gauss-Bonnet Theorem 32
4.4 Some applications of the Gauss-Bonnet theorem 34

1 Curves

This section is based on Chapters 1-3 from [2].

1.1 Parametrized curves in \mathbb{R}^{n}

(i) A curve in $C \subset \mathbb{R}^{n}$ is defined by a set

$$
\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: f_{i}(x)=c_{i}, \text { for } 1 \leq i \leq n-1\right\}
$$

where each $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a continuous functions, and $c_{i} \in \mathbb{R}$.
(ii) Examples of curves in \mathbb{R}^{2}.
(a) The parabola $C_{1}=\left\{(x, y) \in \mathbb{R}^{3}: x^{2}-y=0\right\}$.
(b) The circle $C_{2}=\left\{(x, y) \in \mathbb{R}^{3}: x^{2}+y^{2}=1\right\}$.
(c) The astroid $C_{3}=\left\{(x, y) \in \mathbb{R}^{3}: x^{2 / 3}+y^{2 / 3}=1\right\}$.
(iii) A parametrized curve in \mathbb{R}^{n} is a continuous map

$$
\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{n}: t \stackrel{\gamma}{\mapsto}\left(\gamma_{1}(t), \ldots, \gamma_{n}(t)\right)
$$

where $-\infty \leq \alpha<\beta \leq \infty$, and the $\gamma_{i}: \mathbb{R} \rightarrow \mathbb{R}$ are continuous maps.
(iv) Examples of parametrized curves.
(a) A parametrization for the curve C_{1} is

$$
\gamma_{1}:(-\infty, \infty) \rightarrow \mathbb{R}^{2}: t \stackrel{\gamma_{1}}{\longrightarrow}\left(t, t^{2}\right) .
$$

(b) A parametrization for the curve C_{2} is

$$
\gamma_{2}:(-\infty, \infty) \rightarrow \mathbb{R}^{2}: t \stackrel{\gamma_{2}}{\longrightarrow}(\cos (t), \sin (t)) .
$$

(c) A parametrization for the curve C_{3} is

$$
\gamma_{3}:(-\infty, \infty) \rightarrow \mathbb{R}^{2}: t \stackrel{\gamma_{3}}{\longrightarrow}\left(\cos ^{3}(t), \sin ^{3}(t)\right) .
$$

(v) A parametrized curve $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{n}$ is said to be smooth is all the derivative $\frac{d^{k} \gamma_{i}}{d t^{k}}$, for $1 \leq i \leq n$ and $k \in \mathbb{N}$ exist and are continuous. From here on, we will assume that all parametrizations are smooth.
(vi) Given a parametrized curve $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{n}$, we define its tangent vector by

$$
\gamma^{\prime}(t)=\frac{d \gamma}{d t}
$$

(vii) If the tangent vector of a parametrized curve is constant, then the curve is a part of a straight line.
(viii) The arc length of a parametrized curve $\gamma(t)$ starting at $\gamma\left(t_{0}\right)$ is defined by the function

$$
s(t)=\int_{t_{0}}^{t}\left\|\gamma^{\prime}(u)\right\| d u
$$

(ix) Let $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{n}$ be a parametrized curve. Then the speed of γ at $\gamma(t)$ is defined by $\left\|\gamma^{\prime}(t)\right\|$. The curve γ is said to be of unit speed if $\left\|\gamma^{\prime}(t)\right\|=1$, for all $t \in(\alpha, \beta)$.
(x) Let $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{n}$ be a parametrized curve of unit speed. Then, either $\gamma^{\prime \prime}=0$, or $\gamma^{\prime \prime} \perp \gamma^{\prime}$.
(xi) A parematrized curve $\tilde{\gamma}:(\tilde{\alpha}, \tilde{\beta}) \rightarrow \mathbb{R}^{n}$ is said to be a reparametrization of a parametrized curve $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{n}$ if there exists a smooth bijective map $\phi:(\tilde{\alpha}, \tilde{\beta}) \rightarrow(\alpha, \beta)$ such that ϕ^{-1} is smooth, and $\tilde{\alpha}(\tilde{t})=$ $\gamma(\phi(t))$, for all $\tilde{t} \in(\tilde{\alpha}, \tilde{\beta})$.
(xii) If $\tilde{\gamma}$ is a reparametrization of γ, then γ is a reparametrization of $\tilde{\gamma}$ via the map ϕ^{-1}.
(a) For example, the curve $\tilde{\gamma}(t)=(\sin (t), \cos (t))$ is a reparametrization of $\gamma(t)=(\cos (t), \sin (t))$ via $\phi(t)=\pi / 2-t$.

1.2 Regular curves

(i) A point $\gamma(t)$ of a parametrized curve γ is said to regular if $\gamma^{\prime}(t)=0$, and is said to be a singular point, otherwise.
(ii) A parametrized curve $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{n}$ is said to regular, if $\gamma(t)$ is a regular point, for every $t \in(\alpha, \beta)$.
(iii) Examples of regular (or non-regular) curves.
(a) The logarithmic spiral $\gamma(t)=\left(e^{t} \cos (t), e^{t} \sin (t)\right)$ is regular, as $\left\|\gamma^{\prime}(t)\right\|^{2}=2 e^{2 t} \neq 0$.
(b) The twisted cubic $\gamma(t)=\left(t, t^{2}, t^{3}\right), t \in(-\infty, \infty)$ is regular, as $\left\|\gamma^{\prime}(t)\right\|=\sqrt{1+4 t^{2}+9 t^{4}} \neq 0$.
(c) The regularity of a curve is dependent in its parametrization. For example, $\gamma(t)=\left(t^{3}, t^{6}\right)$ is a not a regular parametrization of the curve $y=x^{2}$.
(iv) Any reparametrization of a regular curve is regular.
(v) If $\gamma(t)$ is a regular curve, then its arc length $s(t)$ starting at any point of γ is a smooth function of t.
(vi) A reparametrized curve is of unit speed if, and only if, its regular.
(vii) Let γ be a regular curve, and let $\tilde{\gamma}$ be a reparametrization of γ given by $\tilde{\gamma}(u(t))=\gamma(t)$, where u is a smooth function of t. Then $\tilde{\gamma}$ is of unit speed if, and only if,

$$
u(t)= \pm s(t)+c,
$$

where $s(t)$ is a the arc length and c is a constant.
(viii) Example of reparametrizations.
(a) The curve $\gamma(t)=e^{t} \cos (t), e^{t} \sin (t)$ has arc length $s(t)=\sqrt{2}\left(e^{t}-1\right)$, and a unit-speed reparametrization given by $t=\log (s / \sqrt{2}+1)$.
(b) The curve $\gamma(t)=\left(t, t^{2}, t^{3}\right)$ has arc-length given by the elliptic integral

$$
s(t)=\int_{0}^{t} \sqrt{1+4 u^{2}=9 u^{4}} d u
$$

(ix) The level set of a smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a set of the form

$$
\left\{x \in \mathbb{R}^{n}: f(x)=c\right\}
$$

where $c \in \mathbb{R}$. A level set of a smooth function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is called a level curve.
(x) Let $f(x, y)$ be a smooth function in two variables. Assume that, at every point of the level curve $C=\left\{(x, y) \in \mathbb{R}^{2}: f(x, y)=0\right\}$, the
partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial x}$ are not both zero. If $P\left(x_{0}, y_{0}\right)$ is a point of C, there exists a regular parametrized curve $\gamma(t)$ defined on an open interval containing 0 such that $\gamma(0)=\left(x_{0}, y_{0}\right)$, and $\gamma(t) \in C$, for all t.
(xi) Let γ be a regular parametrized curve in \mathbb{R}^{2}, and let $\gamma\left(t_{0}\right)=\left(x_{0}, y_{0}\right)$. Then there exists a smooth real-valued function $f(x, y)$ defined for all points x and y defined in open intervals containing x_{0} and y_{0}, respectively, (satisfying the conditions of (x) above) such that $\gamma(t) \in\{(x, y) \in$ $\left.\mathbb{R}^{2}: f(x, y)=0\right\}$, for all t in some open interval containing t_{0}.

1.3 Curvature of curves

(i) Let γ be a unit speed curve with parameter s, and let $\dot{\gamma}=\frac{d \gamma}{d s}$. Then the curvature of γ at a point $\gamma(s)$ is defined by

$$
\kappa(s)=\|\ddot{\gamma}(s)\| .
$$

(ii) Examples of curvature.
(a) The curvature of a line is zero.
(b) The curvature of a circle $\left.\left.\gamma(s)=x_{0}+R \cos (s / R)\right)+y_{0}+R \sin (s / R)\right)$ in \mathbb{R}^{2} with center $\left(x_{0}, y_{0}\right)$ and radius R is given by $\kappa=1 / R$.
(iii) The curvature of a curve remains invariant under reparametrization.
(iv) Let γ be a regular curve in \mathbb{R}^{3} with parameter t. Then its curvature is given at the point $\gamma(t)$ is given by

$$
\kappa(t)=\frac{\left\|\gamma^{\prime \prime}(t) \times \gamma^{\prime}(t)\right\|}{\left\|\gamma^{\prime}(t)\right\|^{3}}
$$

where $\gamma^{\prime}(t)=\frac{d \gamma}{d t}$.
(v) For example, the curvature of the helix h about z-axis

$$
h(\theta)=(a \cos (\theta), a \sin (\theta), b \theta),-\infty<\theta<\infty
$$

is given by $\kappa=|a| /\left(a^{2}+b^{2}\right)$.

1.4 Plane curves

(i) Let γ be a unit-speed plane curve with parameter s, and let $T(s)$ denote the unit tangent vector at $\gamma(s)$.
(a) The signed unit normal $n(s)$ to $\gamma(s)$ (at $\gamma(s)$) is the unit vector obtained by rotating $T(s)=\dot{\gamma}(s)$ counter-clockwise by $\pi / 2$.
(b) Since $\ddot{\gamma}(s)$ is parallel to $n(s)$, it follows that $\ddot{\gamma}(s)=\kappa_{ \pm}(s) n(s)$, where $\kappa_{ \pm}(s)$ is called the signed curvature of γ. By definition, we have

$$
\kappa(s)=\|\ddot{\gamma}(s)\|=\left\|\kappa_{ \pm}(s) n(s)\right\|=\left|\kappa_{ \pm}(s)\right| .
$$

(ii) Let γ be a unit-speed plane curve with parameter s, and let $\varphi(s)$ be the angle through which a fixed unit vector must be rotated counterclockwise to bring it into coincidence with the unit tangent vector T. Then

$$
\kappa_{ \pm}(s)=\frac{d \varphi}{d s}
$$

In particular, the signed curvature of a curve is the rate of rotation of its tangent vector.
(iii) Let $\kappa:(\alpha, \beta) \rightarrow \mathbb{R}$ be a smooth function. Then there exists a unit-speed curve $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ whose signed curvature is κ given by

$$
\gamma(s)=\left(\int_{s_{0}}^{s} \cos (\varphi(t)) d t, \int_{s_{0}}^{s} \sin (\varphi(t)) d t\right), \text { where } \varphi(s)=\int_{s_{0}}^{s} \kappa(u) d u
$$

Furthermore, if $\tilde{\gamma}:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is another unit-speed curve whose signed curvature is κ, then there exists a rigid motion M of \mathbb{R}^{2} such that

$$
\tilde{\gamma}(s)=M(\gamma(s)), \text { for all } s \in(\alpha, \beta) .
$$

(iv) Examples of signed curvature.
(a) The signed curvature of a circle $\left.\gamma(s)=x_{0}+R \cos (s / R)\right)+y_{0}+$ $R \sin (s / R))$ in \mathbb{R}^{2} is given by $\kappa_{ \pm}=1 / R$.
(b) By (iii), a plane curve whose signed curvature is $\kappa_{ \pm}(s)=s$ is given by the Fresnel's integrals

$$
\gamma(s)=\left(\int_{0}^{s} \cos \left(t^{2} / 2\right) d t, \int_{0}^{s} \sin \left(t^{2} / 2\right) d t\right)
$$

(v) Any regular plane curve whose curvature is a positive constant is a part of a circle.

1.5 Space curves

(i) Let γ be a unit-speed curve in \mathbb{R}^{3} with parameter s.
(a) Assuming that $k(s) \neq 0$, for any s, we define the principal normal of γ at $\gamma(s)$ to be

$$
\eta(s)=\frac{1}{\kappa(s)} \frac{d T}{d s} .
$$

(b) We define the binormal vector of γ at $\gamma(s)$ to be

$$
b(s)=T(s) \times \eta(s)
$$

(ii) The unit-vectors $T(s), \eta(s)$, and $b(s)$, form an orthonormal basis for \mathbb{R}^{3}, for every s.
(iii) At every point $\gamma(s)$ in a unit-speed space curve $\gamma, \dot{b}(s)=-\tau(s) \eta(s)$, where $\tau(s)$ is a scalar called the torsion of γ. As τ remains invariant under reparametrization, we define the torsion of an arbitrary regular curve γ to be the torsion of the unit-speed reparametrization of γ.
(iv) Let $\gamma(t)$ be a regular curve with nowhere-vanishing curvature. Then

$$
\tau=\frac{\left(\gamma^{\prime} \times \gamma^{\prime \prime}\right) \cdot \gamma^{\prime \prime \prime}}{\|\dot{\gamma} \times \ddot{\gamma}\|^{2}}
$$

where $\gamma^{\prime}=\frac{d \gamma}{d t}$ and $\dot{\gamma}=\frac{d \gamma}{d s}$.
(v) Let γ be a regular space curve with nowhere-vanishing curvature. Then $\gamma(t)$ is contained in a plan (i.e. planar) if, and only if, $\tau=0$, at every point in γ.
(vi) (Serret-Frenet) Let γ be a unit-speed space curve with nowhere-vanishing curvature. Then

$$
\left[\begin{array}{c}
\dot{T} \\
\eta \\
b
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right]\left[\begin{array}{l}
T \\
\eta \\
b
\end{array}\right] .
$$

(vii) Let γ be a unit-speed space curve with constant curvature and zero torsion. Then γ is a part of a circle.
(viii) Let $\kappa, \tau: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be smooth functions with $\kappa>0$ everywhere. Then there exists a unit-speed curve γ in \mathbb{R}^{3} whose curvature is κ and torsion is τ. Moreover, if $\tilde{\gamma}$ is another curve in \mathbb{R}^{3} with curvature κ and torsion τ, then there exists a rigid motion M (of $\left.\mathbb{R}^{3}\right)$ such that

$$
\tilde{\gamma}(s)=M(\gamma(s)), \text { for all } s
$$

1.6 Simple closed curves

(i) Let $k \in \mathbb{R}$ be a positive constant. A simple closed plane curve with period k is a regular curve $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ such that

$$
\gamma(t)=\gamma\left(t^{\prime}\right) \Longleftrightarrow t-t^{\prime}=n k, \text { where } n \in \mathbb{Z}
$$

(ii) For example, the parametrized circle $\gamma(t)=\cos (2 \pi t / k), \sin (2 \pi t / k)$ is a simple closed curve of period k.
(iii) (Jordan Curve Theorem) Any simple closed plane curve γ has an interior int (γ) and an exterior $\operatorname{ext}(\gamma)$ such that:
(a) $\operatorname{int}(\gamma)$ is bounded,
(b) $\operatorname{ext}(\gamma)$ is unbounded, and
(c) both $\operatorname{int}(\gamma)$ and $\operatorname{ext}(\gamma)$ are connected.
(iv) Since every point $\gamma(t)$ in a simple closed plane curve γ of period k is traced out by an interval of length k, we may assume (without loss of generality) that

$$
\gamma:[0, k] \rightarrow \mathbb{R}^{2} .
$$

(v) The length $\ell(\gamma)$ of a simple closed plane curve $\gamma:[0, k] \rightarrow \mathbb{R}^{2}$ of period k is given by

$$
\ell(\gamma)=\int_{0}^{a}\left\|\gamma^{\prime}(t)\right\| d t
$$

(vi) Let $\gamma:[0, k] \rightarrow \mathbb{R}^{2}$ be a simple closed plane curve of period k. Then a unit-speed reparameterization $\tilde{\gamma}$ of γ has period $\ell(\gamma)$.
(vii) A simple closed plane curve is said to be positively oriented if its signed unit normal $n(s)$ points inward toward $\operatorname{int}(\gamma)$ at every point in $\gamma(s)$ in γ. As a convention, we shall assume from here on that all simple closed curves are positively oriented.
(viii) If $\gamma(t)=(x(t), y(t))$ be a positively oriented simple closed plane curve with period k. Then the area of the interior of γ is given by

$$
\operatorname{Area}(\operatorname{int}(\gamma))=\frac{1}{2} \int_{0}^{k}\left(x y^{\prime}-y x^{\prime}\right) d t
$$

(ix) (Wirtinger's Inequality) Let $F:[0, \pi] \rightarrow \mathbb{R}$ be a smooth function such that $F(0)=F(\pi)=0$. Then

$$
\int_{0}^{\pi}\left(\frac{d F}{d t}\right)^{2} d t \geq \int_{0}^{\pi} F(t)^{2} d t
$$

with equality holding if, and only if, $F(t)=A \sin (t)$, for all $t \in[0, \pi]$, where A is a constant.
(x) (Isoperimetric inequality) Let γ be a simple closed plane curve. Then

$$
\text { Area }(\operatorname{int}(\gamma)) \leq \frac{1}{4 \pi} \ell(\gamma)^{2}
$$

with equality holding if, and only if, γ is a circle.
(xi) The vertex of a plane curve γ is a point where its signed curvature $\kappa_{ \pm}$ has a stationary point (i.e $\frac{d \kappa_{ \pm}}{d t}=0$).
(xii) For example, the curve $\gamma(t)=(a \cos (t), b \sin (t))$ has vertices at $t=$ $0, \pi / 2, \pi$, and $3 \pi / 2$.
(xiii) A simple closed plane curve γ is said to be convex if for any two points $P, Q \in \operatorname{int}(\gamma)$, the straight line segment joining P and Q lies inside $\operatorname{int}(\gamma)$.
(xiv) (Four-vertex theorem) Every convex simple closed plane curve has at least four vertices.

2 Surfaces

This section is based on Chapters 2-3 from [1] and Chapters 3-4 from [3].

2.1 Regular surfaces

(i) A subset $S \subset \mathbb{R}^{3}$ is called regular surface if, for each $p \in S$, there exists a neighborhood $V \ni p$, and a map $f: U \rightarrow V \cap S$ of an open set $U \in \mathbb{R}^{2}$ onto $V \cap S$ such that:
(1) f is differentiable, that is,

$$
f(u, v)=(x(u, v), y(u, v), z(u, v))
$$

has continuous partials of all orders,
(2) f is a homeomorphism, and
(3) for each $q \in U$, the differential $d f_{q}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is injective, that is, at least one of the Jacobians

$$
\frac{\partial(x, y)}{\partial(u, v)}, \frac{\partial(y, z)}{\partial(u, v)}, \frac{\partial(z, x)}{\partial(u, v)}
$$

is nonzero at $q \in U$.
The map f is called a parametrization or local coordinates at p, and the neighborhood $V \cap S \ni p$ is called a coordinate neighborhood at p.
(ii) Examples of regular surfaces.
(a) The unit sphere $S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}$ is a regular surface with the parametrizations

$$
\begin{aligned}
& f_{1}^{ \pm}:\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\} \rightarrow S^{2}:(x, y) \stackrel{f_{1}^{ \pm}}{\longleftrightarrow}\left(x, y, \pm \sqrt{1-x^{2}-y^{2}}\right) \\
& f_{2}^{ \pm}:\left\{(y, z) \in \mathbb{R}^{2}: y^{2}+z^{2}<1\right\} \rightarrow S^{2}:(y, z) \stackrel{f_{2}^{ \pm}}{\longleftrightarrow}\left(\pm \sqrt{1-y^{2}-z^{2}}, y, z\right) \\
& f_{3}^{ \pm}:\left\{(x, z) \in \mathbb{R}^{2}: x^{2}+z^{2}<1\right\} \rightarrow S^{2}:(x, z) \stackrel{f_{3}^{ \pm}}{\longmapsto}\left(x, \pm \sqrt{1-x^{2}-z^{2}}, z\right)
\end{aligned}
$$

The parametrizations above can also be described in the ususal spherical coordinates given by
$f(\theta, \varphi)=(\sin (\theta) \cos (\varphi), \sin (\theta) \sin (\varphi), \cos (\theta))$, where $0<\theta<\pi$ and $0<\varphi<2 \pi$.
(b) The torus T^{2} is the surface generated by rotating a circle of radius r about a straight line belonging to the plane of the circle and at a distance $a>r$ away from the center of the circle. T^{2} is a regular surface with a parametrization given by

$$
\begin{gathered}
f(u, v)=((r \cos (u)+a) \cos (v),(r \cos (u)+a) \sin (v), r \sin (v)), \\
\text { where } 0<u<2 \pi \text { and } 0<v<2 \pi .
\end{gathered}
$$

(iii) Let $U \subset \mathbb{R}^{2}$ be an open set, and let $f: U \rightarrow \mathbb{R}$ be a differentiable map. Then the graph of f is a regular surface.
(iv) Let $U \subset \mathbb{R}^{n}$ be an open set, and let $f: U \rightarrow \mathbb{R}^{m}$ be a differentiable map.
(a) A point $p \in U$ is called a critical point if $d f_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is not surjective.
(b) The image $f(p)$ of a critical point p is called a critical value.
(c) A point in $f(U)$ that is a not a critical value is called a regular value.
(v) Let $U \subset \mathbb{R}^{3}$ be an open set, and let $f: U \rightarrow \mathbb{R}$ be a differentiable map. If $q \in f(U)$ is a regular value, then $f^{-1}(q)$ is a regular surface.
(vi) Let $S \subset \mathbb{R}^{3}$ be a regular surface, and let $p \in S$. Then there exists a neighborhood $V \ni p$ in S such that V is the graph of a differentiable function which has one of the following three forms:

$$
z=f(x, y), y=g(x, z), \text { and } x=h(y, z)
$$

(vii) Examples and nonexamples of regular surfaces.
(a) The torus T^{2} in (ii)(b) is given by the equation

$$
z^{2}=r^{2}-\left(\sqrt{x^{2}+y^{2}}-a\right)^{2} .
$$

Note that the function

$$
f(x, y, z)=z^{2}+\left(\sqrt{x^{2}+y^{2}}-a\right)^{2}
$$

is differentiable, whenever $(x, y) \neq(0,0)$. Thus, r^{2} is a regular value of f, and by (v), it follows that $T^{2}=f^{-1}\left(r^{2}\right)$ is a regular surface.
(b) The one-sheeted cone C given by the equation $z=\sqrt{x^{2}+y^{2}}$ is not a regular surface for the following reason. If C were regular, then by (vi), C must be the graph of a diffrentiable function of the form $z=f(x, y)$, which has to agree with $z=\sqrt{x^{2}+y^{2}}$ in a neighborhood of $(0,0,0)$. But this is impossible, as $z=\sqrt{x^{2}+y^{2}}$ is not differentiable at $(0,0)$.
(viii) Let S be a regular surface, and let $p \in S$. If $f: U \rightarrow \mathbb{R}^{3}$, where $U \subset \mathbb{R}^{3}$ is open, be an injective map with $p \in f(U) \subset S$ such that conditions (1) and (3) of (i) hold, then f^{-1} is continuous.

2.2 Change of coordinates

(i) Let S_{1}, S_{2} be regular surfaces, and let $V_{1} \subset S_{1}$ be an open set. A continuous map $\varphi: V \rightarrow S_{2}$ is said to be differentiable at $p \in V_{1}$ if, given parametrizations

$$
f_{i}: U_{i} \rightarrow S_{i}, \text { for } i=1,2
$$

with $p \in f_{1}(U)$ and $\varphi\left(f_{1}\left(U_{1}\right)\right) \subset f_{2}\left(U_{2}\right)$, the $\operatorname{map} f_{2}^{-1} \circ \varphi \circ f_{1}: U_{1} \rightarrow U_{2}$ is differentiable at $q=f_{1}^{-1}(p)$.
(ii) Two regular surfaces S_{1} and S_{2} are said to be diffeomorphic if there exists a differentiable map $\varphi: S_{1} \rightarrow S_{2}$ with a differentiable inverse $\varphi^{-1}: S_{2} \rightarrow S_{1}$. Such a map φ is called a diffeomorphism from S_{1} to S_{2}.
(iii) Example of differentiable maps and diffeomorphisms.
(a) If $f: U\left(\subset \mathbb{R}^{2}\right) \rightarrow S$ is a parametrization, then $f: U \rightarrow f(U)$ is a diffeomorphism.
(b) Let S_{i}, for $i=1,2$ be regular surfaces, let $S_{1} \subset V$, where, where V is an open set of \mathbb{R}^{3}. If $\varphi: V \rightarrow \mathbb{R}^{3}$ is a differentiable map such that $\varphi\left(S_{1}\right) \subset S_{2}$, then $\left.\varphi\right|_{S_{1}}: S_{1} \rightarrow S_{2}$ is differentiable. In particular, the following maps are differentiable.
(1) Let $S \subset \mathbb{R}^{3}$ be a surface that is symmetric about the $x y$-plane. Then its reflection about the $x y$-plane given by

$$
\rho: S \rightarrow S:(x, y, z) \stackrel{\rho}{\mapsto}(x, y,-z)
$$

is a diffeomorphism.
(2) Let $R_{z, \theta}$ be a rotation in \mathbb{R}^{3} about the z-axis counter-clockwise by θ radians. If S is a regular surface such that $R_{z, \theta}(S) \subset S$, then $\left.R_{z, \theta}\right|_{S}$ is a diffeomorphism.
(3) For fixed nonzero real numbers a, b, c, the differentiable map

$$
\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}:(x, y, z) \stackrel{\varphi}{\mapsto}(x a, y b, z c)
$$

restricts to diffeomorphism from the sphere S^{2} onto the ellipsoid $\left\{(x, y, z) \in \mathbb{R}^{3}:(x / a)^{2}+(y / b)^{2}+(z / c)^{2}=1\right\}$.
(iv) Let S be a regular surface, and let $p \in S$. Let $f: U\left(\subset \mathbb{R}^{2}\right) \rightarrow S$ and $g: V\left(\subset \mathbb{R}^{2}\right) \rightarrow S$ be two parametrizations of S such that $p \in x(U) \subset$ $y(V)=W$. Then the change of coordinates defined by

$$
h:=f^{-1} \circ g: g^{-1}(W) \rightarrow g^{-1}(W)
$$

is a diffeomorphism.
(v) Let S be a regular surface, let $V \subset \mathbb{R}^{3}$ be a open set such that $S \subset V$. If $f: V \rightarrow \mathbb{R}$ is a differentiable function, then so is $\left.f\right|_{S}$.
(vi) Examples of differentiable functions on a regular surface S.
(a) For a fixed unit vector $v \in \mathbb{R}^{3}$, the height function relative of v defined by

$$
h_{v}: S \rightarrow \mathbb{R}: w \stackrel{h_{v}}{\longmapsto} w \cdot v
$$

is differentiable function on S.
(b) For a fixed unit vector $p_{0} \in \mathbb{R}^{3}$, the function defined by

$$
f: S \rightarrow \mathbb{R}: p \stackrel{f}{\mapsto}\left\|p-p_{0}\right\|^{2}
$$

is differentiable function on S.
(vii) Let $f: U\left(\subset \mathbb{R}^{2}\right) \rightarrow \mathbb{R}^{3}$ be a differentiable map. Then:
(a) The map f is called a parametrized surface.
(b) The set $f(U)$ is called the trace of f.
(c) The map f is said to be regular if the differential $d f_{q}: \mathbb{R} 2 \rightarrow \mathbb{R}^{3}$ is injective for all $q \in U$.
(d) A point $p \in U$ where $d f_{p}$ is not injective is called a singular point of f.
(viii) Two important examples of parametrized surfaces.
(a) (Surface of revolution) Let $S \subset \mathbb{R}^{3}$ be the surface obtained by rotating a regular connected plane curve C about an axis ℓ in the plane which does not intersect the curve. Then S is called the surface of revolution generated by the curve C with rotation axis ℓ. In particular, let C be a curve in the $x z$-plane with a parametrization

$$
x=f(v), z=g(v), a<v<b \text { and } f(v)>0,
$$

that is rotated about the z-axis. Then S is a regular parametrized surface with a parametrization given by $F: U \rightarrow \mathbb{R}^{3}$, where

$$
F(u, v)=(f(v) \cos (u), f(v) \sin (u), g(v))
$$

and

$$
U=\left\{(u, v) \in \mathbb{R}^{2}: 0<u<2 \pi \text { and } a<v<b\right\} .
$$

(b) Let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a non-planar parametrized curve. Then

$$
f_{\alpha}(x, y)=\alpha(x)+y \alpha^{\prime}(x),(x, y) \in I \times \mathbb{R}
$$

is a parametrized surface called the tangent surface. Restricting the domain of f to $U=\{(t, v) \in I \times R: v \neq 0\}$, we see that $f: U \rightarrow \mathbb{R}^{3}$ is a regular surface whose trace has two connected components with a common boundary $\alpha(I)$.
(c) Let $f: U \rightarrow \mathbb{R}^{3}$ be a regular parametrized surface, and let $q \in U$. Then there exists a neighborhood $V \ni q$ in \mathbb{R}^{2} such that $f(V) \subset \mathbb{R}^{3}$ is a regular surface.

2.3 Tangent space

(i) Let S be a regular surface. A tangent vector to S at a point $p \in S$ is the tangent vector $\alpha^{\prime}(0)$ of differentiable paramterized curve $\alpha:(\epsilon, \epsilon) \rightarrow S$ with $\alpha(0)=p$.
(ii) Let $f: U\left(\subset \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{m}$ be a differentiable map. To each $p \in U$, we associate a linear map $d f_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ called the differential of f at p which is defined as follows. Let $w \in \mathbb{R}^{n}$, and let $\alpha:(-\epsilon, \epsilon) \rightarrow U$ be a differentiable curve such that $\alpha(0)=p$ and $\alpha^{\prime}(0)=w$. Then $\beta=f \circ \alpha$ is differentiable, and we define

$$
d f_{p}(w):=\beta^{\prime}(0)
$$

(iii) Let $f: U\left(\subset \mathbb{R}^{2}\right) \rightarrow S$ be a parametrization of a regular surface S, and let $q \in U$. Then the vector space $d f_{q}\left(\mathbb{R}^{2}\right) \subset \mathbb{R}^{3}$ coincides with the set of tangent vectors to S at $f(q)$.
(iv) Let $f: U\left(\subset \mathbb{R}^{2}\right) \rightarrow S$ be a parametrization of a regular surface S, and let $q \in U$. Then the plane $d f_{q}\left(\mathbb{R}^{2}\right)$ is called the tangent plane to S at $p=f(q)$ denoted by $T_{p}(S)$. Moreover, the parametrization f determines a choice of basis $\left\{f_{u}(q), f_{v}(q)\right\}$ of $T_{p}(S)$ called the basis associated with f.
(v) Let $f: U\left(\subset \mathbb{R}^{2}\right) \rightarrow S$ be a parametrization of a regular surface S, and let $q \in U$. Let $w=\alpha^{\prime}(0)$, where $\alpha=f \circ \beta$ and $\beta:(-\epsilon, \epsilon) \rightarrow U$ is $\beta(t)=(u(t), v(t)), \beta(0)=q=f^{-1}(p)$. Then

$$
\alpha^{\prime}(0)=f_{u}(q) u^{\prime}(0)+f_{v}(q) v^{\prime}(0)=w .
$$

(vi) Let S_{1}, S_{2} be regular surfaces, and let $\varphi=\left(\varphi_{1}, \varphi_{2}\right): V\left(\subset S_{1}\right) \rightarrow S_{2}$ be a differentiable map. Consider $w \in T_{p}\left(S_{1}\right)$ such that $w=\alpha^{\prime}(0)$, where $\alpha:(-\epsilon, \epsilon) \rightarrow V: t \stackrel{\alpha}{\mapsto}(u(t), v(t))$ with $\alpha(0)=p$. Further, assume that the curve $\beta=\varphi \circ \alpha$ is such that $\beta(0)=\varphi(p)\left(\Longrightarrow \beta^{\prime}(0) \in T_{\varphi(p)}\left(S_{2}\right)\right)$. Then the map $d \varphi_{p}: T_{p}\left(S_{1}\right) \rightarrow T_{\varphi(p)}\left(S_{2}\right)$ defined by $d \varphi_{p}(w)=\beta^{\prime}(0)$ is linear define by

$$
\beta^{\prime}(0)=d \varphi_{p}(w)=\left[\begin{array}{ll}
\frac{\partial \varphi_{1}}{\partial u} & \frac{\partial \varphi_{1}}{\partial v} \\
\frac{\partial \varphi_{2}}{\partial u} & \frac{\partial \varphi_{2}}{\partial v}
\end{array}\right]\left[\begin{array}{l}
u^{\prime}(0) \\
v^{\prime}(0)
\end{array}\right] .
$$

(vii) Examples of differentials of maps.
(a) For a fixed unit vector $v \in \mathbb{R}^{3}$, the differential of the height function relative of v defined by $h_{v}: S \rightarrow \mathbb{R}: w \stackrel{h_{v}}{\longmapsto} w \cdot v$ at $p \in S$ is given by

$$
\left(d h_{v}\right)_{p}(w)=w \cdot v, \forall w \in T_{p}(S)
$$

(b) The differential of the rotation $R_{z, \theta}$ in \mathbb{R}^{3} about the z-axis by θ radians restricted to S^{2} has a differential at $p \in S^{2}$ given by

$$
\left(d R_{z, \theta}\right)_{p}(w)=R_{z, \theta}(w), \forall w \in T_{p}\left(S^{2}\right)
$$

(viii) Let S_{1} and S_{2} be regular surfaces, and let $\varphi: U\left(\subset S_{1}\right) \rightarrow S_{2}$ be a differentiable map of an open set $U \subset S_{1}$ such that $d \varphi_{p}$ is an isomorphism at $p \in U$. Then φ is a local diffeomorphism at p.

2.4 Orientation

(i) Let V be a vector space of dimension 2 over \mathbb{R}.
(a) An orientation for V is a choice of unit-length normal vector N to V.
(b) With respect a fixed orientation N for V, an ordered basis $\left\{v_{1}, v_{2}\right\}$ basis for V is said to be positively oriented if

$$
\frac{v_{1} \times v_{2}}{\left\|v_{1} \times v_{2}\right\|}=N
$$

(c) With respect a fixed orientation N for V, an ordered basis $\left\{v_{1}, v_{2}\right\}$ basis for V is said to be negatively oriented if

$$
\frac{v_{1} \times v_{2}}{\left\|v_{1} \times v_{2}\right\|}=-N \text {. }
$$

(ii) Let V, W be a vector spaces of dimension 2 over \mathbb{R}. Then an isomorphism $T: V \rightarrow W$ is said to be orientation-preserving if for any positively oriented ordered basis $\left\{v_{1}, v_{2}\right\}$ for $V,\left\{T\left(v_{1}\right), T\left(v_{2}\right)\right\}$ is a positively oriented ordered basis for W.
(iii) Let V, W be a vector spaces of dimension 2 over \mathbb{R}. Then an isomorphism $T: V \rightarrow W$ is orientation-preserving if, and only if, the matrix of T with respect to any (choice of) positively oriented ordered bases for V and W has positive determinant.
(iv) Let S be a regular surface. A unit normal vector N_{p} to S at $p \in S$ is a unit-length normal vector to $T_{p}(s)$, that is, $\left\langle N_{p}, v\right\rangle=0$, for all $v \in T_{p}(S)$.
(v) Let S be a regular surface.
(a) A vector field on S is a smooth map $F: S \rightarrow \mathbb{R}^{3}$.
(b) A vector $F: S \rightarrow \mathbb{R}^{3}$ on S is said to be a unit normal field if $T(p)=N_{p}$, for all $p \in S$, where N_{p} is the unit vector to S at p.
(vi) Let S be a regular surface.
(a) An orientation for S is a unit normal field on S.
(b) If S has a orientation, then S is said to be orientable.
(c) If S has no orientation, then S is said to be nonorientable.
(d) Let S be orientable. Then S together with a choice of orientation on it is called an oriented surface.
(vii) Examples of orientable (and nonorientable) surfaces.
(a) For a fixed nonzero unit vector $v \in \mathbb{R}^{3}$, the plane $P_{v} \subset \mathbb{R}^{3}$ with unit normal v is given by

$$
P_{v}=\left\{w \in \mathbb{R}^{3}: w \cdot v=\text { const }\right\}
$$

Then P_{v} is a regular orientable surface with an orientation F on P_{v} defined by $F(w)=v$, for all $w \in P_{v}$.
(b) Let S be a regular surface that is realized as the level surface of a smooth map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, that is, $S=f^{-1}(\lambda)$, for some regular value λ of f. The S is an orientable surface with a natural orientation $F: S \rightarrow \mathbb{R}^{3}$ given by

$$
F(p)=\frac{\nabla f(p)}{\|\nabla f(p)\|}, \forall p \in S
$$

(c) It follows from (b) that the sphere S^{2} is a orientable surface with an orientation given by $F(p)=p$, for all $p \in S^{2}$.
(d) Let $G_{f}=\{(x, y, f(x, y)):(x, y) \in U\}$ be the graph of a smooth function $f: U\left(\subset \mathbb{R}^{2}\right) \rightarrow \mathbb{R}^{3}$, where U is open. Then G_{f} is a orientable surface with an orientation $F: G_{f} \rightarrow \mathbb{R}^{3}$ given by

$$
F(p)=\frac{\left(-f_{x}(p),-f_{y}(p), 1\right)}{\sqrt{f_{x}^{2}(p)+f_{y}^{2}(p)+1}}
$$

(e) The Möbius band M given by the parametrization $f:(0,2 \pi) \times$ $(-1 / 2,1 / 2) \rightarrow \mathbb{R}^{3}$ defined by

$$
f(u, v)=(\cos (u)(2+v \sin (u / 2)), \sin (u)(2+v \sin (u / 2)), v \cos (u / 2))
$$

is a nonorientable regular surface. To see this, we consider the coordinate neighborhoods $f_{i}: U_{i} \rightarrow V_{i} \subset M$, for $i=1$, 2 , where

$$
\begin{gathered}
U_{1}=\left\{(u, v) \in \mathbb{R}^{2}:(u, v) \in(\pi / 3,5 \pi / 3) \times(-1 / 2,1 / 2)\right\} \\
\quad \text { and } \\
U_{2}=\left\{(u, v) \in \mathbb{R}^{2}:(u, v) \in(4 \pi / 3,8 \pi / 3) \times(-1 / 2,1 / 2)\right\} .
\end{gathered}
$$

Let N_{i} be the unit normal fields induced on V_{i}. It can be shown that there exists no global normal fields N on M such that $\left.N\right|_{V_{i}}=$ N_{i}.
(viii) A connected orientable regular surface has exactly two orientations; Each is the negative of the other.
(ix) The connected sum $\Sigma_{1} \# \Sigma_{2}$ of 2 regular surfaces Σ_{i} is formed by deleting open disks $B_{i} \subset \Sigma_{i}$ and the identifying the resulting manifolds $\Sigma_{i}-B_{i}$ to each other along the resultant boundaries by a homeomorphism h : $\partial \Sigma_{2} \rightarrow \partial \Sigma_{1}$ so that

$$
\Sigma_{1} \# \Sigma_{2}=\left(\Sigma_{1}-B_{1}\right) \sqcup_{h}\left(\Sigma_{2}-B_{2}\right) .
$$

(x) For $g \geq 1$, the connected sum of g copies of the torus T^{2} is called the closed orientable surface S_{g} of genus g. For $k \geq 1$, the connected sum of k copies of the real projective plane $\mathbb{R} P^{2}$ is called the closed nonorientable surface N_{k} with k crosscaps.
(xi) (Classification theorem for connected closed regular surfaces) Let S be a be a closed (i.e. $\partial S=\emptyset$) connected regular surface.
(a) If S is orientable, then S is diffeomorphic to the 2-sphere S^{2} or S_{g}, for some $g \geq 1$.
(b) If S is nonorientable, then S is diffeomorphic to N_{k}, for some $k \geq 1$.
(xii) Let S, S^{\prime} be connected oriented regular surfaces, and $f: S \rightarrow S^{\prime}$ be a diffeomorphism. Then:
(a) f is said to be orientation-preserving if for each $p \in S, d f_{p}$: $T_{p}(S) \rightarrow T_{f(p)}\left(S^{\prime}\right)$ is orientation-preserving.
(b) f is said to be orientation-reversing, if f is not orientation-preserving.
(xiii) Examples of orientation-preserving (and reversing) diffeomorphisms.
(a) Let $S \subset \mathbb{R}^{3}$ be a connected regular oriented surface that is left invariant by a rotation $A \in O(3)$ about the origin. Then the diffeomorphism $\left.A\right|_{S}: S \rightarrow S$ is orientation-preserving if, and only if $\operatorname{Det}(A)=1$.
(b) Let $S \subset \mathbb{R}^{3}$ be a connected regular oriented surface that is left invariant by a reflection R_{P} about a plane in $P \subset \mathbb{R}^{3}$. Then $\left.R_{P}\right|_{S}: S \rightarrow S$ is a orientation-reversing diffeomorphism.
(xiv) Let S, S^{\prime} be connected oriented regular surfaces, and $f: S \rightarrow S^{\prime}$ be a diffeomorphism. Then f is orientation-preserving if, and only if, there exists a point $p \in S$ such that $d f_{p}: T_{p}(S) \rightarrow T_{f(p)}(S)$ is orientationpreserving.

2.5 Surface area

(i) Let $f: U\left(\subset \mathbb{R}^{2}\right) \rightarrow S$ be a surface patch with $q \in U$, and let $p=f(q)$. Choosing the standard basis $\left\{e_{1}, e_{2}\right\}$ of \mathbb{R}^{2}, the area distortion of the linear transformation $d f_{q}: \mathbb{R}^{2} \rightarrow T_{p}(S)$ is given by

$$
\left\|f_{u}(q) \times f_{v}(q)\right\| .
$$

(ii) Let S be a regular surface, and let $R \subset S$.
(i) We call R a polygonal region if R is covered by a single coordinate chart $f: U \rightarrow S$ such that $f^{-1}(R)$ equal the union of the interior of a piecewise-regular simple closed curve with its boundary.
(ii) We define the area (or surface area) of a polygonal region R by

$$
\operatorname{Area}(R)=\iint_{f^{-1}(R)}\left\|f_{u} \times f_{v}\right\| d A
$$

(iii) If R is union of finitely many polygonal regions intersecting only along boundaries, then we define the area of R as the sum of the areas over all of these polygonal regions.
(iv) We define the integral over a polygonal region R of a smooth function $g: R \rightarrow \mathbb{R}$ by

$$
\iint_{R} g d A=\iint_{f^{-1}(R)}(g \circ f) \cdot\left\|f_{u} \times f_{v}\right\| d A
$$

(v) If $\psi: U_{1} \rightarrow U_{2}$ is a diffeomorphism between open sets in \mathbb{R}^{2}. Let $\varphi: U_{2} \rightarrow \mathbb{R}$ is smooth, and $K \subset U_{2}$ is a polygonal region. Then

$$
\iint_{K} \varphi d A=\iint_{\psi^{-1}(K)}(\varphi \circ \psi) \cdot\left\|\psi_{u} \times \psi_{v}\right\| d A .
$$

(iii) Examples of surface areas.
(a) The graph G_{f} of a smooth function $f: U\left(\subset \mathbb{R}^{2}\right) \rightarrow \mathbb{R}$ of covered by a single surface patch $g: U \rightarrow G:(x, y) \stackrel{g}{\mapsto}(x, y, f(x, y))$. Therefore, the area of a polygonal region $R \subset G$ is given by

$$
\operatorname{Area}(R)=\iint_{g^{-1}(R)} \sqrt{f_{x}^{2}+f_{y}^{2}+1} d A
$$

(b) The graph G_{f} of a smooth function $f: U\left(\subset \mathbb{R}^{2}\right) \rightarrow \mathbb{R}$ of covered by a single surface patch $g: U \rightarrow G:(x, y) \stackrel{g}{\mapsto}(x, y, f(x, y))$. Therefore, the area of a polygonal region $R \subset G$ is given by

$$
\operatorname{Area}(R)=\iint_{g^{-1}(R)} \sqrt{f_{x}^{2}+f_{y}^{2}+1} d A
$$

(c) The unit sphere S^{2} is covered by the coordinate chart

$$
f:(0,2 \pi) \times(0, \pi) \rightarrow S^{2}:(\theta, \phi) \stackrel{f}{\mapsto}(\sin (\phi) \cos (\theta), \sin (\phi) \sin (\theta), \cos (\phi)) .
$$

Consequently,

$$
\operatorname{Area}\left(S^{2}\right)=4 \pi
$$

(d) If $f: S_{1} \rightarrow S_{2}$ is a diffeomorphism between regular surfaces and $R \subset S_{1}$ is a polygonal region, then $f(R)$ is a polygonal region, and

$$
\operatorname{Area}(f(R))=\iint_{R}\left|f_{u} \times f_{v}\right| d A
$$

2.6 Isometries and the first fundamental form

(i) The first fundamental form of a regular surface S assigns to each $p \in S$ the quadratic form

$$
I_{p}: T_{p}(S) \rightarrow \mathbb{R}: x \stackrel{I_{p}}{\longmapsto}\|x\|_{p}^{2},
$$

where $\|x\|$ is the usual square norm in \mathbb{R}^{2}.
(ii) Let $f: U\left(\subset \mathbb{R}^{2}\right) \rightarrow S$ be a surface patch. A tangent vector $w \in T_{p}(S)$ is the tangent vector to a parametrized curve $\alpha(t)=f(u(t), v(t))$, where $t \in(-\epsilon, \epsilon)$ with $p=\alpha(0)=f\left(u_{0}, v_{0}\right)$. Consequently, we have

$$
I_{p}\left(\alpha^{\prime}(0)\right)=E\left(u^{\prime}\right)^{2}+F u^{\prime} v^{\prime}+G\left(v^{\prime}\right)^{2},
$$

where

$$
E\left(u_{0}, v_{0}\right)=\left\langle f_{u}, f_{u}\right\rangle_{p}, F\left(u_{0}, v_{0}\right)=\left\langle f_{u}, f_{v}\right\rangle_{p}, \text { and } G\left(u_{0}, v_{0}\right)=\left\langle f_{v}, f_{v}\right\rangle_{p} .
$$

(iii) Let S_{1}, S_{2} be regular surfaces . A diffeomorphism $f: S_{1} \rightarrow S_{2}$ is called an isometry if $d f$ preserves their first fundamental forms, that is,

$$
\left\|d f_{p}(x)\right\|_{f(p)}^{2}=\|x\|_{p}^{2}, \forall p \in S_{1} \text { and } x \in T_{p}\left(S_{1}\right)
$$

This is equivalent to saying that $d f$ preserves the inner products of S_{1} and S_{2}, that is,

$$
\left\langle d f_{p}(x), d f_{p}(y)\right\rangle_{f(p)}=\langle x, y\rangle_{p}, \forall p \in S_{1} \text { and } x, y \in T_{p}\left(S_{1}\right)
$$

(iv) Examples of isometries.
(a) If f is a rigid motion of \mathbb{R}^{3} and S is a regular surface, $f(S)$ is a regular surface and $\left.f\right|_{S}: S \rightarrow f(S)$ is an isometry.
(b) The cylindrical patch

$$
f:(-\pi, \pi) \times \mathbb{R} \rightarrow C:(u, v) \stackrel{f}{\mapsto}(\cos (u), \sin (u), v)
$$

is an isometry.

2.7 Conformal and equiareal maps

(i) Let S_{1}, S_{2} be regular surfaces. A diffeomorphism $f: S_{1} \rightarrow S_{2}$ is called equiareal if

$$
\left\|f_{u}(p) \times f_{v}(p)\right\|=1, \forall p \in S_{1} .
$$

(ii) A diffeomorphism $f: S_{1} \rightarrow S_{2}$ is equiareal if, and only if preserves the areas of polygonal regions.
(iii) Let S_{1}, S_{2} be a regular surfaces. A diffeomorphism $f: S!S_{2}$ is called conformal if $d f$ is angle-preserving, that is,

$$
\angle(x, y)=\angle\left(d f_{p}(x), d f_{p}(y)\right), \forall p \in S_{1} \text { and } x, y \in T_{p}\left(S_{1}\right) .
$$

(iv) A diffeomorphism $f: S_{1} \rightarrow S_{2}$ is conformal if, and only if, there exists a smooth positive-valued function $\lambda: S_{1} \rightarrow \mathbb{R}$ such that

$$
\left\langle d f_{p}(x), d f_{p}(y)\right\rangle_{f(p)}=\lambda(p)^{2} \cdot\langle x, y\rangle, \forall p \in S_{1} \text { and } x, y \in T_{p}\left(S_{1}\right)
$$

(v) Examples of equiareal and conformal maps.
(a) Given $\lambda>0$, the linear map $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by the matrix $A=\left(\begin{array}{cc}\lambda & 0 \\ 0 & 1 / \lambda\end{array}\right)$ is equiareal, but not conformal.
(b) Given $\lambda>0$, the linear map $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by the matrix $A=\left(\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right)$ is conformal, but not equiareal.
(c) The stereographic projection $\pi_{N}: S^{2} \backslash\{N\} \rightarrow \mathbb{R}^{2}$ is conformal, but not equiareal.
(vi) A diffeomorphism $f: S_{1} \rightarrow S_{2}$ is an isometry if, and only if, it is equiareal and conformal.

3 The curvature of a surface

3.1 Gaussian curvature

(i) Let S be an oriented surface with an orientation $N: S \rightarrow \mathbb{R}^{3}$.
(i) The Gauss map is the function N regarded as function $S \rightarrow S^{2}$.
(ii) For each $p \in S$, the Weingarten map is the linear map

$$
W_{p}=-d N_{p}: T_{p}(S) \rightarrow T_{P}(S)
$$

(iii) For each $p \in S$,

$$
K(p)=\operatorname{Det}\left(W_{p}\right) \text { and } H(p)=\frac{1}{2} \operatorname{Trace}\left(W_{p}\right)
$$

are respectively called the Gaussian curvature and the mean curvature of S at p.
(ii) Let S be an oriented surface, and $p \in S$. Then the Weingarten map W_{p} is represented by a symmetric matrix with respect to any orthonormal basis of $T_{p}(S)$.
(iii) Examples of Gaussian and mean curvatures.
(i) Let S be a two-dimensional subspace of \mathbb{R}^{3}. Since S can be oriented by a constant unit normal field $N, W_{p}(v)=0$, for each $p \in S$ and each $v \in T_{p}(S)$. Thus, the

$$
K(p)=H(p)=0, \forall p \in S
$$

(ii) The sphere $S^{2}(r)$ of radius r has an orientation given by $N(p)=$ p / r, for all $p \in S^{2}(r)$. Consequently,

$$
W_{p}=-\frac{1}{r}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), K(p)=\frac{1}{r^{2}}, \text { and } H(p)=-\frac{1}{r} .
$$

(iii) Let $u \subset \mathbb{R}^{2}$ be open and $f: U \rightarrow \mathbb{R}$ be a smooth function. Then G_{f} is an orientable surface with an orientation $F: G_{f} \rightarrow \mathbb{R}^{3}$ given by

$$
F(p)=\frac{\left(-f_{x}(p),-f_{y}(p), 1\right)}{\sqrt{f_{x}^{2}(p)+f_{y}^{2}(p)+1}}, \forall p \in G_{f} .
$$

Let $q=\left(x_{0}, y_{0}\right)$ be critical point of f, and let $p=f(q)$. Then

$$
W_{p}=\left(\begin{array}{ll}
f_{x x}(q) & f_{x y}(q) \\
f_{y x}(q) & f_{y y}(q)
\end{array}\right),
$$

and

$$
K(p)=f_{x x}(q) f_{y y}(q)-f_{x y}(q)^{2} .
$$

Thus, if $K(p)>0$, the p is a local extremum, and if $K(p)<0$, then p is a saddle point.

3.2 The second fundamental form

(i) A quadratic form Q_{T} associated with a self-adjoint linear map $T: V \rightarrow$ V is given by $Q_{T}: V \rightarrow \mathbb{R}: v \xrightarrow{Q_{T}}\langle v, T(v)\rangle$.
(ii) Let S be a oriented regular surface, and let $p \in S$. Let $\left\{v_{1}, v_{2}\right\}$ be an orthonormal basis of $T_{p}(S)$ with respect to which $W_{p}=\left(\begin{array}{cc}k_{1} & 0 \\ 0 & k_{2}\end{array}\right)$.
(a) The eigenvectors $\pm v_{1}$ and $\pm v_{2}$ are called the principal directions of S at p.
(b) The eigenvalues k_{1} and k_{2} are called the principal curvatures of S at p. If $k_{1}=k_{2}$, then p is called an umbilical point.
(c) The quadratic form associated to W_{p} is called the second fundamental form $I I_{p}$ of S at p, that is:

$$
I I_{p}(v)=\left\langle W_{p}(v), v\right\rangle=\left\langle-d N_{p}(v), v\right\rangle .
$$

(d) If $v \in T_{p}(S)$ with $\|v\|=1$, then $I I_{p}(v)$ is called the normal curvature of S at p in the direction of v.
(iii) Let $\left\{v_{1}, v_{2}\right\}$ be an orthonormal basis of eigenvectors of a self-adjoint linear map T corresponding to eigenvalues $\lambda_{1} \leq \lambda_{2}$. Then

$$
Q_{T}\left(\cos (\theta) v_{1}+\sin (\theta) v_{2}\right)=\lambda_{1} \cos ^{2}(\theta)+\lambda_{2} \sin ^{2}(\theta)
$$

In particular, λ_{1} and λ_{2} are the maximum and minimum values (resp.) of Q_{T} on S^{1}.
(iv) By (iii), the action of $I I_{p}$ on an arbitrary unit tangent vector is given by

$$
I I_{p}\left(\cos (\theta) v_{1}+\sin (\theta) v_{2}\right)=k_{1} \cos ^{2}(\theta)+k_{2} \sin ^{2}(\theta) .
$$

In particular, k_{1} and k_{2} are the minimum and maximum normal curvatures. Moreover,

$$
K(p)=k_{1} k_{2} \text { and } H(p)=\frac{1}{2}\left(k_{1}+k_{2}\right) .
$$

(v) Curvature of the cylinder: Consider the cylinder of radius r about the z-axis given by

$$
C(r)=\left\{(r \cos (\theta), r \sin (\theta), z) \in \mathbb{R}^{3}: \theta \in[0,2 \pi), z \in \mathbb{R}\right\}
$$

At $p_{0}=\left(r \cos \left(\theta_{0}\right), r \sin \left(\theta_{0}\right), z_{0}\right) \in C(r)$, we have

$$
W_{p_{0}}=\left(\begin{array}{cc}
-1 / r & 0 \\
0 & 0
\end{array}\right) .
$$

So, its principal directions are

$$
v_{1}=\left(-\sin \left(\theta_{0}\right), \cos \left(\theta_{0}\right), 0\right) \text { and } v_{2}=(0,0,1)
$$

and its principal curvatures are

$$
k_{1}=-\frac{1}{r} \text { and } k_{2}=0
$$

Hence, $C(r)$ has constant Guassian and mean curvatures given by

$$
K=0 \text { and } H=-\frac{1}{2 r} .
$$

(vi) Let S be an oriented regular surface, $p \in S$, and $v \in T_{p}(S)$ with $\|v\|=1$. Consider the family of all regular curves γ in S. Consider the family $F_{p, \gamma}$ of all regular curves γ in S with $\gamma(0)=0$ and $\gamma^{\prime}(0)=v$. Then:
(a) For every curve $\gamma \in F_{p, \gamma}$, we have

$$
\left\langle\gamma^{\prime \prime}(0), N(p)\right\rangle=I I_{p}(v) .
$$

(b) The minimum curvature at p among curves in the family (regarded as space curves) equals $\left|I I_{p}(v)\right|$.
(vii) Let $\kappa_{n}=I I_{p}(v)$, and let γ be a unit-speed curve with $a=\gamma^{\prime \prime}(0)$. Then by (vi)(a), we have

$$
a=\kappa_{n} \cdot N(p)+\kappa_{g} \cdot R_{\pi / 2}(v)
$$

where $R_{\pi / 2}$ denotes a rotation of $T_{p}(S)$ by $\pi / 2$, and κ_{n} and κ_{g} are scalars. The scalars κ_{n} (resp. κ_{g}) are called the normal (resp. geodesic) curvatures of γ at p. Moreover, as $\kappa=\left\|\gamma^{\prime \prime}(0)\right\|$, we have

$$
\kappa^{2}=\kappa_{n}^{2}+\kappa_{g}^{2}
$$

3.3 The geometry of the Gauss map

(i) Let S be an oriented regular surface with an orientation N, and let $f: U\left(\subset \mathbb{R}^{2}\right) \rightarrow S$ be a local parametrization at $p \in S$ that is compatible with N. Let $\alpha(t)=f(u(t), v(t))$ be a parametrized curve on S with $\alpha(0)=p$. Then:
(a) The second fundamental form in the basis $\left\{f_{u}, f_{v}\right\}$ is given by

$$
I I_{p}\left(\alpha^{\prime}\right)=e\left(u^{\prime}\right)^{2}+2 f u^{\prime} v^{\prime}+g\left(v^{\prime}\right)^{2}
$$

where

$$
\begin{aligned}
e & =-\left\langle N_{u}, f_{u}\right\rangle=\left\langle N, f_{u u}\right\rangle \\
f & =-\left\langle N_{v}, f_{u}\right\rangle=\left\langle N, f_{u v}\right\rangle=\left\langle N, f_{v u}\right\rangle=-\left\langle N_{u}, f_{v}\right\rangle \\
g & =-\left\langle N_{v}, f_{v}\right\rangle=\left\langle N, f_{v v}\right\rangle
\end{aligned}
$$

(b) The coefficients of the Weingarten map $W_{p}=\left(a_{i j}\right)_{2 \times 2}$ are given by the equations

$$
\left(\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right)=-\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right)\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)^{-1}=-\frac{1}{E G-f^{2}}\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right)\left(\begin{array}{cc}
G & -F \\
-F & E
\end{array}\right) .
$$

(c) The Gaussian curvature K is given by

$$
K=\operatorname{Det}\left(W_{p}\right)=\frac{e g-f^{2}}{E G-F^{2}},
$$

and the mean curvature is given by

$$
H=\frac{1}{2} \frac{e G-2 f F+g E}{E G-F^{2}}
$$

(d) The principal curvatures k_{1}, k_{2} are the roots of the quadratic equation

$$
k^{2}-2 H k+K=0,
$$

which are given by

$$
k=H \pm \sqrt{H^{2}-k}
$$

(ii) Some explicit computations of Gaussian curvature.
(a) The Gaussian curvature of the torus under the parametrization

$$
\begin{gathered}
f(u, v)=((a+r \cos (u)) \cos (v),((a+r \cos (u)) \sin (v), r \sin (u)), \\
0<u<2 \pi, 0<v<2 \pi
\end{gathered}
$$

can be computed to be

$$
K=\frac{\cos (u)}{r(a+r \cos (u))} .
$$

From this, it follows that

$$
K \begin{cases}=0, & \text { if } u=\pi / 2 \text { or } 3 \pi / 2, \\ <0, & \text { if } u \in(\pi / 2,3 \pi / 2), \text { and } \\ >0, & \text { if } u \in(0, \pi / 2) \sqcup(3 \pi / 2,2 \pi) .\end{cases}
$$

(b) Consider the surface of revolution as in 2.2 (viii)(a), where f and g are replaced by φ and ψ, respectively, so that

$$
\begin{gathered}
f(u, v)=(\varphi(v) \cos (u), \varphi(v) \sin (u), \psi(v)), \\
0<u<2 \pi, a<v<b, \varphi(v) \neq 0 .
\end{gathered}
$$

Assuming that the rotating curve is parametrized by arc length, we have

$$
G=\left(\varphi^{\prime}\right)^{2}+\left(\psi^{\prime}\right)^{2}=1
$$

so that

$$
K=-\frac{\psi^{\prime}\left(\psi^{\prime} \varphi^{\prime \prime}-\psi^{\prime \prime} \varphi^{\prime}\right)}{\varphi}
$$

(c) Let $G_{f}=\{(x, y, f(x, y)):(x, y) \in U\}$ be the graph of a smooth function $f: U\left(\subset \mathbb{R}^{2}\right) \rightarrow \mathbb{R}^{3}$, where U is open. Then

$$
\begin{gathered}
K=\frac{f_{x x} f_{y y}-f_{x y}^{2}}{\left(1+f_{x}^{2}+f_{y}^{2}\right)^{2}} \\
2 H=\frac{\left(1+f_{x}^{2}\right) f_{y y}-2 f_{x} f_{y} f_{x y}+\left(1+f_{y}^{2}\right) f_{x x}}{\left(1+f_{x}^{2}+f_{y}^{2}\right)^{3 / 1}}
\end{gathered}
$$

(iii) Let S be an oriented surface, and let $p \in S$ with $K(p) \neq 0$. Then there exists a neighborhood of p in S restricted to which the Gauss map $N: S \rightarrow S^{2}$ is a diffeomorphism onto its image. Furthermore, $K(p)$ is positive (resp. negative) if, and only if, this diffeomorphism is orientation-preserving (resp. reversing) with respect to the given orientation N of S.
(iv) Let S be a regular surface, and let $p \in S$.
(a) If $K(p)>0$, then a sufficiently small neighborhood of p in S lies entirely on one side of the plane $p+T_{p}(S)$.
(b) If $K(p)<0$, then every neighborhood of p in S intersects both sides of the plane $p+T_{p}(S)$.

3.4 Minimal surfaces

(i) A regular parametrized surface is called minimal if its mean curvature vanishes everywhere.
(ii) Let $f: U\left(\subset \mathbb{R}^{2}\right) \rightarrow \mathbb{R}^{3}$ be a regular parametrized surface. Let $D \subset U$ be a bounded domain, and let $h: \bar{D} \rightarrow \mathbb{R}$ be a differential function. The normal variation of $f(\bar{D})$ determined by h, is the map

$$
\varphi: \bar{D} \times(\epsilon, \epsilon) \rightarrow \mathbb{R}^{3}
$$

defined by

$$
\varphi(u, v, t)=f(u, v)+t h(u, v) N(u, v),(u, v) \in \bar{D} \text { and } t \in(-\epsilon, \epsilon) .
$$

(iii) Given a bounded variation φ as above, for each $t \in(-\epsilon, \epsilon)$, the map $f^{t}: D \rightarrow \mathbb{R}^{3}$ given by

$$
f^{t}(u, v)=\varphi(u, v, t)
$$

is a parametrized regular surface for ϵ sufficiently small. Let E^{t}, F^{t}, G^{t} be the coefficients of the first fundamental form of this surface. The area of $f^{t}(\bar{D})$ is given by

$$
A(t)=\int_{\bar{D}} \sqrt{E^{t} G^{t}-\left(F^{t}\right)^{2}} d u d v=\int_{\bar{D}} \sqrt{1-4 t h H+\bar{R}} \sqrt{E G-F^{2}} d u d v
$$

where $\bar{R}=R /\left(E G-F^{2}\right)$. Consequently,

$$
A^{\prime}(0)=-\int_{\bar{D}} 2 h H \sqrt{E G-F^{2}} d u d v
$$

(iv) Let $f: U \rightarrow \mathbb{R}^{3}$ be a regular parametrized surface, and let $D \subset U$ be a bounded domain. Then f is minimal if, and only if, $A^{\prime}(0)=0$ for all D and all bounded variations of $f(\bar{D})$.
(v) A regular parametrized surface $f(u, v)$ is said to be isothermal if

$$
\left\langle f_{u}, f_{v}\right\rangle=\left\langle f_{v}, f_{u}\right\rangle \text { and }\left\langle f_{u}, f_{v}\right\rangle=0
$$

(vi) The mean curvature vector \mathcal{H} of a regular parametrized surface is defined by $\mathcal{H}=H N$.
(vii) Let $f=f(u, v)$ be a regular parametrized surface, and f be isothermal. Then

$$
f_{u u}+f_{v v}=2 \lambda^{2} \mathcal{H}
$$

where $\lambda^{2}=\left\langle f_{u}, f_{u}\right\rangle=\left\langle f_{v}, f_{v}\right\rangle$.
(viii) Let $f(u, v)=x(u, v), y(u, v), z(u, v))$ be a parametrized surface with isothermal coordinates. Then f is minimal if, and only if, its coordinated functions $x(u, v), y(u, v)$, and $z(u, v)$ are harmonic.
(ix) Examples of minimal surfaces.
(a) The catenoid given by
$f(u, v)=(a \cosh (v) \cos (u), a \cosh (v) \sin (u), a v), u \in(0,2 \pi), v \in \mathbb{R}$, is the surface obtained by rotating the catenary $y=a \cosh (z / a)$ about the z-axis is a minimal surface. In fact, it is the only minimal surface of revolution.
(b) The helicoid given by
$f(u, v)=(a \sinh (v) \cos (u), a \sinh (v) \sin (u), a u), u \in(0,2 \pi), v \in \mathbb{R}$, is a minimal surface.

4 The Gauss-Bonnet Theorem

4.1 Geodesics

(i) A regular curve $\gamma: I \rightarrow S$ in a surface S is called a geodesic if for every $t \in I$, the the acceleration vector $\gamma^{\prime \prime}(t)$ is a normal vector to S at $\gamma(t)$ (i.e normal to $T_{\gamma(t)}(S)$).
(ii) (Existence and uniqueness of geodesics) Let S be a regular surface, $p \in S$, and $v \in T_{p}(S)$ with $r=|v| \neq 0$. Then there exists $\epsilon=\epsilon(p, r)>0$ such that:
(a) There exists a geodesic $\gamma_{v}:(-\epsilon, \epsilon) \rightarrow S$ satisfying conditions $\gamma_{v}(0)=p$ and $\gamma_{v}^{\prime}(0)=v$.
(b) Any two geodesics with this domain satisying these initial conditions must be equal.

Furthermore, $\gamma_{v}(t)$ depends smoothly on p, v, t.
(iii) Examples of geodesics.
(a) A regular curve γ in \mathbb{R}^{2} if, and only if, it is (or part of) a straight line parametrized by constant speed.
(b) There exists no geodesic between any two points on either side of the origin in $\mathbb{R}^{2} \backslash\{(0,0)\}$.
(c) Any geodesic on the unit sphere S^{2} centered at the origin is a great circle (or a part of a great circle). That is, given $p \in S^{2}$ and $v \in T_{p}\left(S^{2}\right)$,

$$
\gamma(t)=(\cos (t)) p+(\sin (t)) v
$$

is a geodesic.
(d) The helix $\gamma(t)=(\cos (t), \sin (t), c t)$ is a geodesic in the cylinder $C=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=1\right\}$.
(iv) (Clairaut's theorem) Let S be a surface of revolution. Let $\beta: I \rightarrow S$ be a unit-speed curve in S. For every $s \in I$, let $\rho(s)$ denote the distance from $\beta(s)$ to the axis of rotation and let $\psi(s) \in[0, \pi]$ denote the angle between $\beta^{\prime}(s)$ and the longitudinal curve through $\beta(s)$.
(a) If β is a geodesic, then $\rho(s) \sin (\psi(s))$ is constant on I.
(b) If $\rho(s) \sin (\psi(s))$ is a constant on I, then β is a geodesic, provided no segment of β equals a subsegment of a latitudinal curve.

4.2 The Local Gauss-Bonnet theorem

(i) Let S be an oriented surface.
(a) A subset $R \subset S$ is called a region of S if it equals the union of a open set in S together with its boundary.
(b) A region $R \subset S$ is called regular if its boundary (∂R) equals the union of the finitely many piecewise-regular simple closed curves.
(c) A parametrization $\gamma:[a, b] \rightarrow R$ of a boundary component regular region in S is said to be positively-oriented if R is to one's left as one traverses γ.
(ii) (The Local Gauss-Bonnet Theorem) Let S be an oriented regular surface and $R \subset S$ a polygonal region. Let $\gamma:[a, b] \rightarrow R$ be a unit-speed positively-oriented parametrization of ∂R, with signed angles denoted by $\left\{\alpha_{i}\right\}$. Then

$$
\underbrace{\int_{a}^{b} \kappa_{g}(t) d t+\sum_{i} \alpha_{i}}_{\text {angle displacement around } \gamma}=2 \pi-\iint_{R} K d A .
$$

4.3 The Global Gauss-Bonnet Theorem

(i) Let S be a regular surface.
(a) A triangle in S is a polygonal region with three vertices. The three smooth segments of the boundary of a triangular region are called edges.
(b) A triangulation of a regular region $R \subset S$ means a finite family $\left\{T_{1} \ldots, T_{F}\right\}$ of te triangles such that:
(1) $\cup_{i} T_{i}=R$, and
(2) if $i \neq j$, then $T_{i} \cap T_{j}=\emptyset$, or $T_{i} \cap T_{j}$ is a common edge, or $T_{i} \cap T_{j}$ is a common vertex.
(c) The Euler characteristic of a triangulation $\left\{T_{1} \ldots, T_{F}\right\}$ of R is

$$
\chi=V-E+F
$$

(ii) Let S be a regular surface, and $R \subset S$ be a regular region. Two distinct triangulations of R has the same Euler characteristic.
(iii) Every regular surface admits a triangulation.
(iv) The Euler characteristic $\chi(S)$ of a regular surface S is defined to be the Euler characteristic of any triangulation of S.
(v) The Euler characteristic of (the triangulation of) a regular surface is a topological invariant. That is, homeomorphic regular surfaces have the same Euler characteristic.
(vi) Examples of χ for surfaces.
(a) $\chi\left(S^{2}\right)=2$.
(b) $\chi\left(D^{2}\right)=1$, where D^{2} is a closed disk. Consequently, $\chi(R)=1$, when R is a simple polygonal region.
(c) $\chi(A)=0$, where A is the annulus (or the cylinder).
(d) $\chi\left(S_{g}\right)=2-2 g$, where S_{g} denoted the closed oriented surface of genus $g \geq 1$. In particular, $\chi\left(S_{g}\right)<0$, when $g \geq 2$.
(vii) (The Global Gauss-Bonnet Theorem) Let S be an oriented regular surface and $R \subset S$ a regular region with unit-speed positively-oriented boundary components. Then

$$
\int_{a}^{b} \kappa_{g}(t) d t+\sum_{i} \alpha_{i}=2 \pi \chi(R)-\iint_{R} K d A
$$

where $\int_{a}^{b} \kappa_{g}(t)$ denotes the sum of the integrals over all boundary components of R, and $\sum \alpha_{i}$ denotes the sum of the signed interior angles over all vertices of all boundary components of R.

4.4 Some applications of the Gauss-Bonnet theorem

(i) If S is a closed oriented surface, then

$$
\iint_{S} K d A=2 \pi \chi(S) .
$$

In particular, if S has constant curvature K, then

$$
K \operatorname{Area}(S)=2 \pi \chi(S)
$$

(ii) If S is a regular surface with $K \geq 0$, then two geodesics from a point $p \in S$ cannot again at a point $q \in S$ so that they cobound a region that is diffeomorphic to a disk.
(iii) If S is a regular surface that is diffeomorphic to a cylinder with $K<0$, then S has at most one closed geodesic (up to reparametrization).

References

[1] Manfredo P Do Carmo. Differential Geometry of Curves and Surfaces: Revised and Updated Second Edition. Courier Dover Publications, 2016.
[2] Andrew Pressley. Elementary differential geometry. Springer Undergraduate Mathematics Series. Springer-Verlag London, Ltd., London, second edition, 2010.
[3] Kristopher Tapp. Differential geometry of curves and surfaces. Undergraduate Texts in Mathematics. Springer, [Cham], 2016.

